Change search
ReferencesLink to record
Permanent link

Direct link
A pseudocompressibility method for the numerical simulation of incompressible multifluid flows
2004 (English)In: International Journal of Multiphase Flow, ISSN 0301-9322, Vol. 30, no 7-8, 901-937 p.Article in journal (Refereed) Published
Abstract [en]

This paper presents an explicit characteristics-based, conservative, finite-difference method for the simulation of incompressible multiphase flows. The method is based on the artificial compressibility concept, e,,tended to variable-density, and uses a time stretching procedure to relieve the acoustic constrain. We take advantage of the algorithmic simplicity and hyperbolicity provided by the artificial compressibility to develop a flow solver that is numerically robust, accurate and effective for massively parallel computations of incompressible multifluid flows. The resulting method, named Numerical Acoustic Relaxation or NAR, is a combination of the AC concept with the Level Set method for interface-capturing and the Ghost-Fluid method to compute flows with multiple, arbitrary density variation, free or stationary interfaces. In this paper we demonstrate convergence and accuracy of the solver by computing such standard test problems as the Lid-Driven Cavity and Doubly Periodic Shear Layer. Competitiveness with approximate projection, vorticity stream function, pseudospectral, and Lattice Boltzmann Equation is also discussed. In addition, we demonstrate the interface-capturing features of NAR by means of the simple Rayleigh-Taylor and Water Column Collapse problems.

Place, publisher, year, edition, pages
2004. Vol. 30, no 7-8, 901-937 p.
Keyword [en]
incompressible flow, artificial compressibility, pseudocompressibility method, numerical acoustic relaxation, characteristics-based treatment, level set, ghost fluid, multifluid flow, navier-stokes equations, rayleigh-taylor instability, weighted eno schemes, ghost fluid method, mean-curvature, front-tracking, dynamics, volume, motion, speed
URN: urn:nbn:se:kth:diva-23732DOI: 10.1016/j.imultiphaseflow.2004.03.010ISI: 000223941200011OAI: diva2:342431
QC 20100525Available from: 2010-08-10 Created: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Dinh, Truc-Nam
In the same journal
International Journal of Multiphase Flow

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 42 hits
ReferencesLink to record
Permanent link

Direct link