Change search
ReferencesLink to record
Permanent link

Direct link
Mean value surfaces with prescribed curvature form
KTH, Superseded Departments, Mathematics.ORCID iD: 0000-0002-4971-7147
2004 (English)In: Journal des Mathématiques Pures et Appliquées, ISSN 0021-7824, Vol. 83, no 9, 1075-1107 p.Article in journal (Refereed) Published
Abstract [en]

The Gaussian curvature of a two-dimensional Riemannian manifold is uniquely determined by the choice of the metric. The formulas for computing the curvature in terms of components of the metric, in isothermal coordinates, involve the Laplacian operator and therefore, the problem of finding a Riemannian metric for a given curvature form may be viewed as a potential theory problem. This problem has, generally speaking, a multitude of solutions. To specify the solution uniquely, we ask that the metric have the mean value property for harmonic functions with respect to some given point. This means that we assume that the surface is simply connected and that it has a smooth boundary. In terms of the so-called metric potential, we are looking for a unique smooth solution to a nonlinear fourth order elliptic partial differential equation with second order Cauchy data given on the boundary. We find a simple condition on the curvature form which ensures that there exists a smooth mean value surface solution. It reads: the curvature form plus half the curvature form for the hyperbolic plane (with the same coordinates) should be less than or equal to 0. The same analysis leads to results on the question of whether the canonical divisors in weighted Bergman spaces over the unit disk have extraneous zeros. Numerical work suggests that the above condition on the curvature form is essentially sharp. Our problem is in spirit analogous to the classical Minkowski problem, where the sphere supplies the chart coordinates via the Gauss map.

Place, publisher, year, edition, pages
2004. Vol. 83, no 9, 1075-1107 p.
Keyword [en]
bordered surface, Riemannian metric, minimal area, mean value property, curvature form, bergman spaces, invariant subspaces, extremal-functions
National Category
URN: urn:nbn:se:kth:diva-23741DOI: 10.1016/j.matpur.2004.03.001ISI: 000224008300001ScopusID: 2-s2.0-4444305803OAI: diva2:342440
QC 20100525 QC 20110923Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2011-09-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hedenmalm, Håkan
By organisation
In the same journal
Journal des Mathématiques Pures et Appliquées

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 11 hits
ReferencesLink to record
Permanent link

Direct link