References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt156",{id:"formSmash:upper:j_idt153:j_idt156",widgetVar:"widget_formSmash_upper_j_idt153_j_idt156",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Mean value surfaces with prescribed curvature formPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2004 (English)In: Journal des Mathématiques Pures et Appliquées, ISSN 0021-7824, Vol. 83, no 9, 1075-1107 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2004. Vol. 83, no 9, 1075-1107 p.
##### Keyword [en]

bordered surface, Riemannian metric, minimal area, mean value property, curvature form, bergman spaces, invariant subspaces, extremal-functions
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-23741DOI: 10.1016/j.matpur.2004.03.001ISI: 000224008300001ScopusID: 2-s2.0-4444305803OAI: oai:DiVA.org:kth-23741DiVA: diva2:342440
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt455",{id:"formSmash:j_idt455",widgetVar:"widget_formSmash_j_idt455",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt461",{id:"formSmash:j_idt461",widgetVar:"widget_formSmash_j_idt461",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt467",{id:"formSmash:j_idt467",widgetVar:"widget_formSmash_j_idt467",multiple:true});
##### Note

QC 20100525 QC 20110923Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2011-09-23Bibliographically approved

The Gaussian curvature of a two-dimensional Riemannian manifold is uniquely determined by the choice of the metric. The formulas for computing the curvature in terms of components of the metric, in isothermal coordinates, involve the Laplacian operator and therefore, the problem of finding a Riemannian metric for a given curvature form may be viewed as a potential theory problem. This problem has, generally speaking, a multitude of solutions. To specify the solution uniquely, we ask that the metric have the mean value property for harmonic functions with respect to some given point. This means that we assume that the surface is simply connected and that it has a smooth boundary. In terms of the so-called metric potential, we are looking for a unique smooth solution to a nonlinear fourth order elliptic partial differential equation with second order Cauchy data given on the boundary. We find a simple condition on the curvature form which ensures that there exists a smooth mean value surface solution. It reads: the curvature form plus half the curvature form for the hyperbolic plane (with the same coordinates) should be less than or equal to 0. The same analysis leads to results on the question of whether the canonical divisors in weighted Bergman spaces over the unit disk have extraneous zeros. Numerical work suggests that the above condition on the curvature form is essentially sharp. Our problem is in spirit analogous to the classical Minkowski problem, where the sphere supplies the chart coordinates via the Gauss map.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1196",{id:"formSmash:lower:j_idt1196",widgetVar:"widget_formSmash_lower_j_idt1196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1197_j_idt1199",{id:"formSmash:lower:j_idt1197:j_idt1199",widgetVar:"widget_formSmash_lower_j_idt1197_j_idt1199",target:"formSmash:lower:j_idt1197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});