Change search
ReferencesLink to record
Permanent link

Direct link
Comparison of NMR cryoporometry, mercury intrusion porosimetry, and DSC thermoporosimetry in characterizing pore size distributions of compressed finely ground calcium carbonate structures
KTH, Superseded Departments, Chemistry.
Show others and affiliations
2004 (English)In: Industrial & Engineering Chemistry Research, ISSN 0888-5885, E-ISSN 1520-5045, Vol. 43, no 24, 7920-7927 p.Article in journal (Refereed) Published
Abstract [en]

This work investigates for the first time how mercury intrusion porosimetry (MIP), NMR-based cryoporometry, and DSC-based thermoporosimetry compare in revealing the porous characteristics of ground calcium carbonate structures compacted over a range of pressures. The comparison is made using the same source samples throughout. MIP, a much-used method in the characterization of porous structures, has the drawback that the high pressure needed to intrude the mercury may either distort the skeletal porous structure of the sample, especially when compressible materials such as cellulose or binders/latex are present, or lead to a reduction in the measured number of large pores due to the shielding by smaller pores. These effects have previously been addressed using bulk modulus corrections and by modeling the structure permeability to account for the potential shielding. Cryoporometry gives detailed information about the pore size distribution of an imbibition saturated structure. Thermoporosimetry is a relatively new candidate in this field, and it yields both pore size distribution and pore volume. Currently it is somewhat limited in the pore size range detectable, but it is relevant to pigmented coatings. Its potential is identified for capturing the pores involved in the progress of imbibition before saturation is reached.

Place, publisher, year, edition, pages
2004. Vol. 43, no 24, 7920-7927 p.
Keyword [en]
coating structures, porous solids, paper, space, absorption, sandstone, networks, liquids, media, water
National Category
Materials Chemistry
URN: urn:nbn:se:kth:diva-23905DOI: 10.1021/ie049448pISI: 000225323800030ScopusID: 2-s2.0-9244248652OAI: diva2:342604
QC 20100525 QC 20110913Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2011-09-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Valiullin, RustemFuro, Istvan
By organisation
In the same journal
Industrial & Engineering Chemistry Research
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 92 hits
ReferencesLink to record
Permanent link

Direct link