Change search
ReferencesLink to record
Permanent link

Direct link
Mesomixing in semi-batch reaction crystallization and influence of reactor size
KTH, Superseded Departments, Chemical Engineering and Technology.
KTH, Superseded Departments, Chemical Engineering and Technology.
2004 (English)In: AIChE Journal, ISSN 0001-1541, E-ISSN 1547-5905, Vol. 50, no 12, 3107-3119 p.Article in journal (Refereed) Published
Abstract [en]

Experiments on semibatch reaction crystallization of benzoic acid are reported, in which hydrochloric acid was fed into an agitated solution of sodium benzoate. The influence of mixing and the influence of reactor size are examined on the product crystal mean size. The product mean size increases with increasing stirring rate and with decreasing feed rate. At low feed rates, the mean size increases at decreasing feed pipe diameter. At high feed rates the influence of the feed pipe diameter is more complex. Micromixing is of some importance in most experiments, but the rate of mesomixing especially governs the process. Mesomixing seems to be adequately described by the inertial-convective disintegration mechanism. In many aspects experimental results cannot be described by the turbulent-dispersion mechanism. The product mean size does not exhibit a clear dependence on reactor size, but depends more strongly on other parameters. Results from experiments from 1 L scale to 200 L scale can be correlated fairly well against a dimensionless number defined as the ratio of the total time of reactant feeding to the time constant of mixing. The best representation of the mixing time constant is obtained by making it directly proportional to the ratio of the feed pipe diameter and the linear velocity of the bulk flow passing the feed pipe. The proportionality constant can be calculated from turbulence data. over the bulk flow at the feed point.

Place, publisher, year, edition, pages
2004. Vol. 50, no 12, 3107-3119 p.
Keyword [en]
precipitation, scale-up, mixing, mesomixing, feed pipe diameter, crystallization, stirred-tank reactors, scale-up, precipitation, impeller, mixer, flow
National Category
Chemical Engineering
URN: urn:nbn:se:kth:diva-23919DOI: 10.1002/aic.10213ISI: 000225445000011ScopusID: 2-s2.0-10844238915OAI: diva2:342618
QC 20100525Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2011-09-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Torbacke, MarikaRasmuson, Åke C.
By organisation
Chemical Engineering and Technology
In the same journal
AIChE Journal
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 29 hits
ReferencesLink to record
Permanent link

Direct link