Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Application of selective epitaxy for formation of ultra shallow SiGe-based junctions
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.ORCID iD: 0000-0002-5845-3032
Show others and affiliations
2004 (English)In: Materials Science & Engineering: B. Solid-state Materials for Advanced Technology, ISSN 0921-5107, E-ISSN 1873-4944, Vol. 114-115, no SPEC. ISS, 180-183 p.Article in journal (Refereed) Published
Abstract [en]

Selective epitaxial growth (SEG) of B-, P- and As-doped Si1-xGex (0.12 < x < 0.26) layers on patterned substrates, aimed for source/drain ultra shallow junctions was investigated. The SiGe layers were deposited selectively on Si surface that is either unprocessed or previously in situ etched by HCl in the same run in a reduced pressure chemical vapor deposition reactor. In these investigations selectivity mode, pattern dependency (loading effect), defect generation and dopant incorporation in SiGe layers have been discussed. It was demonstrated that the growth rate increased in presence of B in SiGe while it decreased for P- and As-doped layers. The amount of Ge was constant for B-doped samples while it increased for As- and P-doped SiGe layers. The epitaxial quality was dependent on the Ge amount, growth rate and dopant concentration. The selectivity mode of the growth was dependent on B partial pressure, however, no effect was observed for P- or As-doping in SiGe layers. A resistivity value of similar to10(-3) Omega cm was obtained for B- and P-doped SiGe layers with optimized growth parameters.

Place, publisher, year, edition, pages
2004. Vol. 114-115, no SPEC. ISS, 180-183 p.
Keyword [en]
CVD, epitaxy, SiGe layers, boron, phosphorous, arsenic, HCl etching, x-ray-diffraction, growth, relaxation, strain
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-23977DOI: 10.1016/j.mseb.2004.07.052ISI: 000226016400032Scopus ID: 2-s2.0-10644240786OAI: oai:DiVA.org:kth-23977DiVA: diva2:342676
Note
QC 20100525 QC 20110927. Available from: 2010-08-10 Created: 2010-08-10 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hållstedt, JuliusIsheden, ChristianÖstling, MikaelRadamson, Henry H.
By organisation
Microelectronics and Information Technology, IMIT
In the same journal
Materials Science & Engineering: B. Solid-state Materials for Advanced Technology
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 50 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf