Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Symmetric tensors with applications to Hilbert schemes
KTH, Superseded Departments, Mathematics.
1999 (English)Article in journal (Other academic) Submitted
Abstract [en]

Let A[X]_U be a fraction ring of the polynomial ring A[X] in the variable X over a commutative ring A. We show that the Hilbert functor {Hilb}^n_{A[X]_U} is represented by an affine scheme SymmnA(A[X]U) give as the ring of symmetric tensors of ⊗nAA[X]U . The universal family is given as Symmn−1A(A[X]U)×ASpec(A[X]U) .

Place, publisher, year, edition, pages
1999.
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-24061OAI: oai:DiVA.org:kth-24061DiVA: diva2:343073
Note

QC 20100812

Available from: 2010-08-12 Created: 2010-08-12 Last updated: 2015-09-23Bibliographically approved
In thesis
1. On Hilbert schemes parameterizing points on the affine line having support in a fixed subset
Open this publication in new window or tab >>On Hilbert schemes parameterizing points on the affine line having support in a fixed subset
2000 (English)Doctoral thesis, comprehensive summary (Other scientific)
Place, publisher, year, edition, pages
Stockholm: KTH, 2000. ii p.
National Category
Mathematics
Identifiers
urn:nbn:se:kth:diva-2935 (URN)
Public defence
2000-03-17, 00:00
Note
QC 20100812Available from: 2000-05-24 Created: 2000-05-24 Last updated: 2010-08-12Bibliographically approved

Open Access in DiVA

No full text

Other links

arXiv

Search in DiVA

By author/editor
Skjelnes, Roy
By organisation
Mathematics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 36 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf