Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Preliminary study on CO2 processing in CO2 capture from oxy-fuel combustion
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.
2007 (English)In: Proceedings of the ASME Turbo Expo, vol. 3: Montreal, Que.: 14 May 2007 through 17 May 2007, 2007, 353-361 p.Conference paper, Published paper (Refereed)
Abstract [en]

Oxy-fuel combustion is one of promising technologies for CO2 capture, which uses simple flue gas processing normally including compression, dehydration and purification/liquefaction (non-condensable gas separation). However relatively high levels of impurities in the flu gas present more challenges for the gas processing procedure. This paper studied the sensitivity of operating parameters to inlet composition, the effects of impurities on energy consumption, and the relationship between energy consumption and operating parameters. Results show that comparatively the total compression work is more sensitive to the composition of SO2 if the total mass flow is constant; while the operating temperature of purification is more sensitive to N-2. To pursue the minimum energy consumption, from the viewpoint of impurity, the content Of O-2, N-2, Ar and H2O should be lowered as much as possible, which means the amount of air leakage into the system and excess oxygen should be controlled at a low level in the combustion; as to SO2, if it is possible to co-deposit with CO2, its existence may be helpful to decrease compression work. From the viewpoint of operating parameters, low intermediate pressure, high intercooling temperature and high outlet pressure are favorable to achieve high energy utilization, if heat recovery is considered.

Place, publisher, year, edition, pages
2007. 353-361 p.
Keyword [en]
oxy-fuel combustion, CO2 processing, impurity, operating parameters, energy consumption, sensitivity analysis
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-24167ISI: 000252771900036Scopus ID: 2-s2.0-34548779734ISBN: 978-0-7918-4792-3 (print)OAI: oai:DiVA.org:kth-24167DiVA: diva2:344491
Note
QC 20100819Available from: 2010-08-19 Created: 2010-08-19 Last updated: 2010-08-19Bibliographically approved
In thesis
1. Thermodynamic Properties of CO2 Mixtures and Their Applications in Advanced Power Cycles with CO2 Capture Processes
Open this publication in new window or tab >>Thermodynamic Properties of CO2 Mixtures and Their Applications in Advanced Power Cycles with CO2 Capture Processes
2008 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

The thermodynamic properties of CO2-mixtures are essential for the design and operation of CO2 Capture and Storage (CCS) systems. A better understanding of the thermodynamic properties of CO2 mixtures could provide a scientific basis to define a proper guideline of CO2 purity and impure components for the CCS processes according to technical, safety and environmental requirements. However the available accurate experimental data cannot cover the whole operation conditions of CCS processes. In order to overcome the shortage of experimental data, theoretical estimation and modelling are used as a supplemental approach.

 

In this thesis, the available experimental data on the thermodynamic properties of CO2 mixtures were first collected, and their applicability and gaps for theoretical model verification and calibration were also determined according to the required thermodynamic properties and operation conditions of CCS. Then in order to provide recommendations concerning calculation methods for engineering design of CCS, totally eight equations of state (EOS) were evaluated for the calculations about vapour liquid equilibrium (VLE) and density of CO2-mixtures, including N2, O2, SO2, Ar, H2S and CH4.

 

With the identified equations of state, the preliminary assessment of impurity impacts was further conducted regarding the thermodynamic properties of CO2-mixtures and different processes involved in CCS system. Results show that the increment of the mole fraction of non-condensable gases would make purification, compression and condensation more difficult. Comparatively N2 can be separated more easily from the CO2-mixtures than O2 and Ar. And a lower CO2 recovery rate is expected for the physical separation of CO2/N2 under the same separation conditions. In addition, the evaluations about the acceptable concentration of non-condensable impurities show that the transport conditions in vessels are more sensitive to the non-condensable impurities and it requires very low concentration of non-condensable impurities in order to avoid two-phase problems.

 

Meanwhile, the performances of evaporative gas turbine integrated with different CO2 capture technologies were investigated from both technical and economical aspects. It is concluded that the evaporative gas turbine (EvGT) cycle with chemical absorption capture has a smaller penalty on electrical efficiency, while a lower CO2 capture ratio than the EvGT cycle with O2/CO2 recycle combustion capture. Therefore, although EvGT + chemical absorption has a higher annual cost, it has a lower cost of electricity because of its higher efficiency. However considering its lower CO2 capture ratio, EvGT + chemical absorption has a higher cost to avoid 1 ton CO2. In addition the efficiency of EvGT + chemical absorption can be increased by optimizing Water/Air ratio, increasing the operating pressure of stripper and adding a flue gas condenser condensing out the excessive water.

Place, publisher, year, edition, pages
Stockholm: KTH, 2008. xii, 63 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2008:58
Keyword
Thermodynamic property, vapour liquid equilibrium, density, equation of state, interaction parameter, CO2 mixtures, evaporative gas turbine, chemical absorption, oxy-fuel combustion, cost evaluation, CO2 capture and storage
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-9109 (URN)978-91-7415-091-9 (ISBN)
Public defence
2008-10-10, FA32, Roslagstullsbacken 21, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20100819Available from: 2008-09-26 Created: 2008-09-19 Last updated: 2010-08-19Bibliographically approved

Open Access in DiVA

No full text

Other links

ScopusScopus

Search in DiVA

By author/editor
Hailong, LiJinyue, Yan
By organisation
Energy Processes
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 119 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf