Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-Speed Control of Fiber Bragg Gratings
KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP. KTH, School of Information and Communication Technology (ICT), Centres, Zhejiang-KTH Joint Research Center of Photonics, JORCEP.
KTH, School of Information and Communication Technology (ICT), Centres, Zhejiang-KTH Joint Research Center of Photonics, JORCEP. ACREO, Sweden.
ACREO, Sweden.
ACREO, Sweden.
Show others and affiliations
2007 (English)In: 2007 Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (BGPP), Optical Society of America, 2007Conference paper, Published paper (Refereed)
Abstract [en]

FBGs were written in fiber with internal alloy electrodes. Nanosecond high current pulses cause metal expansion, increase birefringence and tune the gratings. High-speed wavelength switching was accomplished with potential use in Q-switching fiber lasers.

Place, publisher, year, edition, pages
Optical Society of America, 2007.
Series
Optics InfoBase Conference Papers, ISSN 2162-2701
Keyword [en]
Fiber lasers, Glass, Light sensitive materials, Photosensitivity, Q switching, Waveguides, Alloy electrodes, High-current pulse, In-fiber, Wavelength-switching
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-24685Scopus ID: 2-s2.0-84898788502ISBN: 978-155752847-6 ISBN: 1557528470 (print)OAI: oai:DiVA.org:kth-24685DiVA: diva2:352708
Conference
Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, BGPP 2007, Quebec City, Canada, 2 September 2007 through 2 September 2007
Note

QC 20100922

Available from: 2010-09-22 Created: 2010-09-22 Last updated: 2015-04-16Bibliographically approved
In thesis
1. Fibre Bragg Grating Components for Filtering, Switching and Lasing
Open this publication in new window or tab >>Fibre Bragg Grating Components for Filtering, Switching and Lasing
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fibre Bragg gratings (FBGs) are key components for a vast number of applications in optical communication systems, microwave photonics systems, and optical sensors, etc. The main topic of this thesis is fibre Bragg grating fabrication and applications in direct microwave optical filtering, high speed switching and switchable dual-wavelength fibre lasers.

First, a brief overview is given about the photosensitivity in optical fibre, basic FBG fabrication techniques, the popular coupled-mode theory for describing fundamental characteristics of FBGs and the Transfer Matrix method for the numerical simulations of complex-structured FBGs.

An advanced FBG fabrication system based on the technique of multiple printing in fibre (with a continuous-wave source) has been used to write complex FBGs incorporating phase shifts, apodization and chirp.     

A single double-peaked superimposed grating working in reflection can be employed as a direct optical filter for millimetre-wave signals. Bit error rate measurements confirmed that the filter exhibited nearly on-off behaviour in the passband with a 3-dB bandwidth of 2 GHz for a central frequency of 20 GHz, as expected from the optical spectrum reflection. The presented technique can be used in radio-over-fibre systems or simultaneous up-conversion of ultra-wide band signals and filtering.

This thesis focused mostly on the research of two 4-cm long Hamming-apodized gratings written in side-hole fibres with internal electrodes. The temperature dependence measurements showed that the birefringence of the component increased with the temperature. Dynamic measurement has shown nanosecond full off-on and on-off switching. During the electrical pulse action, the grating wavelength was blue-shifted for the x-polarization and red-shifted for the y-polarization due to the mechanical stress. Both peaks subsequently experienced a red-shift due to the relaxation of mechanical stress and the increasing core temperature transferred from the metal in many microseconds. All the wavelength shifts of the two polarizations depend quadratically on the electrical pulse voltage and linearly on the pulse duration. Numerical simulations gave accurate description of the experimental results and were useful to understand the physics behind the birefringence switching.

Finally, two switchable dual-wavelength erbium-doped fibre lasers based on FBG feedback were proposed. In one method, an overlapping cavity for the two lasing wavelengths and hybrid gain medium in the fibre laser were introduced. Dual-wavelength switching was achieved by controlling the Raman pump power. The other method employed an injection technique and the dual-wavelength switching was controlled by the power of the injection laser. The switching time was measured to be ~50 ms. Detailed characteristics of the dual-wavelength switching in the two fibre lasers were experimentally studied and corresponding principles were physically explained.

Place, publisher, year, edition, pages
Stockholm: KTH, 2008. xvi, 91 p.
Series
Trita-ICT/MAP AVH, ISSN 1653-7610 ; 2008:14
Keyword
fibre Bragg grating, photosensitivity, apodization, chirp, phase-shift, microwave optical filtering
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-4896 (URN)
Public defence
2008-10-03, room N2, Electrum 3, Isafjordsgatan 28, Kista, 10:00 (English)
Opponent
Supervisors
Note
QC 20100922Available from: 2008-09-24 Created: 2008-09-17 Last updated: 2010-09-22Bibliographically approved

Open Access in DiVA

No full text

Scopus

Search in DiVA

By author/editor
Yu, ZhangweiMargulis, WalterFonjallaz, Pierre-Yves
By organisation
Microelectronics and Applied Physics, MAPZhejiang-KTH Joint Research Center of Photonics, JORCEP
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 54 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf