Change search
ReferencesLink to record
Permanent link

Direct link
Storm water runoff measurements of copper from anaturally patinated roof and from a parking space. Aspects on environmental fate and chemical speciation
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.ORCID iD: 0000-0003-2206-0082
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.ORCID iD: 0000-0003-2145-3650
Water and Sewage Network Investigations, Stockholm Vatten VA AB, Torsgatan 26, SE-106 36 Stockholm, Sweden.
2009 (English)In: Water Research, ISSN 0043-1354, E-ISSN 1879-2448, Vol. 43, 5031-5038 p.Article in journal (Refereed) Published
Abstract [en]

Release of copper from a naturally aged copper roof on a shopping centre building in a suburban site of Stockholm has been measured during different rain events after its interaction with the internal drainage system and storm drains made of cast iron and concrete. Concentrations of copper removed by means of urban storm water from a nearby parking space have been determined for comparison. Predictions and measurements of the chemical speciation of released copper are discussed compared to the total concentration, and to threshold values for freshwater and drinking water. The results clearly illustrate that the major part of the released copper from the roof is readily retainedalreadyduringtransport throughthe internal drainage systemof the building, a pathway that also changes the chemical speciation of released copper and its bioavailable fraction.Most copper,not retainedby cast ironandconcrete surfaces,wasstronglycomplexed to organic matter. The median concentration of free cupric ions and weak copper complexes was less than, or within the range of reported no effect concentrations, NOECs, of copper in surface waters. The parking space contributed with significantly higher and time-dependent concentrations of total copper compared to measured concentrations of copper fromthe roof after the interaction with the drainage system. Most copper in the surface runoff water was strongly complexed with organic matter, hence reducing the bioavailable fraction significantly to concentrations within the NOEC range. Dilution with other sources of urban storm water will reduce the released concentration of copper even further. The results illustrate that already the internal drainage system and the storm drains made of cast iron and concrete act as efficient sinks for released copper which means that any installation of additional infiltration devices is redundant.

Place, publisher, year, edition, pages
2009. Vol. 43, 5031-5038 p.
National Category
Physical Chemistry
URN: urn:nbn:se:kth:diva-24692DOI: 10.1016/j.watres.2009.08.025ISI: 000274724700005ScopusID: 2-s2.0-70849124889OAI: diva2:352850

QC 20101006

Available from: 2010-09-22 Created: 2010-09-22 Last updated: 2016-05-25Bibliographically approved
In thesis
1. Environmental and health aspects of corrosion– importance of chemical speciation
Open this publication in new window or tab >>Environmental and health aspects of corrosion– importance of chemical speciation
2010 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

During the last decades, the interest in corrosion of metals and alloys from an environmental and health perspective has increased rapidly as a consequence of stricter environmental and human exposure legislations, their extensive use as implant materials and an increasing understanding related to occupational and/or daily exposure to airborne particles. Corrosion-induced metal release, however, needs to be understood in detail and to include knowledge related to chemical speciation, i.e. the oxidation state, complexation and chemical form of released metals, parameters of high importance when considering toxicity.

In this licentiate work, corrosion-induced metal runoff from roofing materials (copper, zinc, and chromium(III)-, and chromium(VI) surface treated galvanized steel) has been investigated from an environmental perspective with focus on chemical speciation of released metals (Papers I-II). From these papers it was evident that the total concentration measured in the runoff water is not sufficient for any environmental risk assessment. The environmental fate including changes in chemical speciation and hence metal precipitation has to be considered. For example, it was shown that the copper concentration decreased by three orders of magnitude already in the internal drainage system of a shopping centre with a copper roof, to a concentration lower than storm water collected from a nearby parking space (Paper I). Also, speciation measurements can explain corrosion, metal release and surface processes of chromium surface treated galvanized steel at different sites (urban and marine). Any environmental risk assessment has to be done by considering all metal species released, and compared with ecotoxic values. For example, when most chromium(VI) (the most toxic species) was released, significantly less zinc was released at the same time which decreased the overall ecotoxicity of the runoff water significantly (Paper II).

When assessing environmental risks by standard laboratory tests, it is important to understand all mechanisms which are possibly influenced by individual experimental parameters and which often are different for different test substances. Some metals released, as seen in the case of iron, may precipitate with time and be pH-, solution- and buffering dependent. This behavior can lead to strongly underestimated measured metal concentrations (Paper III).

When particles of metals or alloys are to be investigated (Papers III-VI), it is essential to conduct a thorough particle characterization, since the surface properties cannot be defined. In addition, the surface properties (oxide layer properties) change with varying particle size (Paper VI) and with other experimental parameters such as dispersion (Paper VI).

All iron-, and chromium-based particles investigated (Papers III-VI) revealed large differences between alloy particles and pure metals. Particles of pure iron and nickel released significantly more metals compared with particles of the investigated alloys, whereas particles of pure chromium released less metals compared with the alloys. Particles of stainless steel (AISI 316L), ferro-chromium and ferro-silicon-chromium released very low amounts of metals (Papers III-VI). The released quantity increased with increased acidity (Papers III-VI) and also in the presence of complexing agents (ongoing research). The manufacturing process is of high importance, as observed for stainless steel particles when compared with a side product from stainless steel production with similar composition that released significantly more metals (Paper III). Particles of metal oxides, i.e. chromium(III)oxide and iron(II,III)oxide, released very low amounts of metals due to their thermodynamic stability.

Ongoing research activities focus on the specific influence of complexing agents and proteins on the metal release process from massive sheet and particles of metals and alloys. The applicability and the possibility to use different analytical tools are investigated and elaborated for small-sized particles. A detailed understanding of the correlation between material and particle characteristics, the metal release process, the chemical speciation in interaction with proteins and/or cells, and the particle/cell interaction is essential to enable any correlation between material/particle characteristics and toxicity.

The aim of this licentiate summary is – in contrast to the six included scientific papers – to explain the importance of chemical speciation for corrosion processes from a health and environmental perspective in a popular way to reach a broad non-academic audience. The summary is hence written as a guidance document for stakeholders and the regulatory community working with environmental and health risk assessment.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH, 2010. xvi, 36 p.
Trita-CHE-Report, ISSN 1654-1081 ; 32
urn:nbn:se:kth:diva-24701 (URN)978-91-7415-716-1 (ISBN)
2010-10-28, conference room 3, YKI, Drottning Kristinas väg 49A, Stockholm, 10:00 (English)
QC 20101006Available from: 2010-10-06 Created: 2010-09-23 Last updated: 2010-12-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Odnevall Wallinder, IngerHedberg, Yolanda
By organisation
Surface and Corrosion Science
In the same journal
Water Research
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 73 hits
ReferencesLink to record
Permanent link

Direct link