Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Degradation studies of PEMFC cathodes based on different types of carbon
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0002-2268-5042
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0001-9203-9313
2009 (English)In: ECS Transactions, 2009, Vol. 25, no 1 PART 2, 1241-1250 p.Conference paper, Published paper (Refereed)
Abstract [en]

In this study different accelerated degradation tests were used evaluating three different carbon supports as well as a thin model electrode. Cyclic ADTs, by 1000 cycles beween 0.6 and 1.2 V in nitrogen, did not degrade the porous electrodes to any larger extent in terms of oxygen reduction activity, whereas a significant loss of electrochemical surface area was seen, often more than 50%. Potentiostatic hold at 1.4 V during 3 h, did not permanently degrade the electrodes but instead an improved activity was obtained after rest during night. A correlation of increase in double layer capacitance and improved performance was seen and believed to be caused by the good proton conductivity of carbon surface oxides. CO-stripping peaks revealed that the humidity and wetting of Nafion™ may have caused the observed temporary changes during the potentiostatic hold. ©The Electrochemical Society.

Place, publisher, year, edition, pages
2009. Vol. 25, no 1 PART 2, 1241-1250 p.
Keyword [en]
Accelerated degradation tests, Carbon support, Carbon surface oxides, Degradation study, Double-layer capacitance, Electrochemical surface area, Oxygen Reduction, PEMFC cathode, Porous electrodes, Potentiostatics, Degradation, Electrolytic reduction, Membranes, Oxygen, Proton exchange membrane fuel cells (PEMFC), Protons, Stripping (dyes), Electrochemical electrodes
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-25234DOI: 10.1149/1.3210679ISI: 000329585500126Scopus ID: 2-s2.0-77649265443ISBN: 978-156677738-4 (print)OAI: oai:DiVA.org:kth-25234DiVA: diva2:356649
Conference
9th Proton Exchange Membrane Fuel Cell Symposium (PEMFC 9) - 216th Meeting of the Electrochemical Society; Vienna; 4 October 2009 through 9 October 2009
Note

QC 20101014

Available from: 2010-10-13 Created: 2010-10-13 Last updated: 2014-10-06Bibliographically approved
In thesis
1. Electrochemical Reactions in Polymer Electrolyte Fuel Cells
Open this publication in new window or tab >>Electrochemical Reactions in Polymer Electrolyte Fuel Cells
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The polymer electrolyte fuel cell converts the chemical energy in a fuel, e.g. hydrogen or methanol, and oxygen into electrical energy. The high efficiency and the possibility to use fuel from renewable sources make them attractive as energy converters in future sustainable energy systems. Great progress has been made in the development of the PEFC during the last decade, but still improved lifetime as well as lowered cost is needed before a broad commercialization can be considered. The electrodes play an important role in this since the cost of platinum used as catalyst constitutes a large part of the total cost for the fuel cell. A large part of the degradation in performance can also be related to the degradation of the porous electrode and a decreased electrochemically active Pt surface.

In this thesis, different fuel cell reactions, catalysts and support materials are investigated with the aim to investigate the possibility to improve the activity, stability and utilisation of platinum in the fuel cell electrodes.

An exchange current density, i0, of 770 mA cm-2Pt was determined for the hydrogen oxidation reaction in the fuel cell with the model electrodes. This is higher than previously found in literature and implies that the kinetic losses on the anode are very small. The anode loading could therefore be reduced without imposing too high potential losses if good mass transport of hydrogen is ensured. It was also shown that the electrochemically active surface area, activity and stability of the electrode can be affected by the support material. An increased activity was observed at higher potentials for Pt deposited on tungsten oxide, which was related to the postponed oxide formation for Pt on WOx. An improved stability was seen for Pt deposited on tungsten oxide and on iridium oxide. A better Pt stability was also observed for Pt on a low surface non-graphitised support compared to a high surface graphitised support. Pt deposited on titanium and tungsten oxide, displayed an enhanced electrochemically active surface area in the cyclic voltammograms, which was explained by the good proton conductivity of the metal oxides. CO-stripping was shown to provide the most reliable measure of the electrochemically active surface area of the electrode in the fuel cell. It was also shown to be a useful tool in characterization of the degradation of the electrodes. In the study of oxidation of small organic compounds, the reaction was shown to be affected by the off transport of reactants and by the addition of chloride impurities. Pt and PtRu were affected differently, which enabled extraction of information about the reaction mechanisms and rate determining steps.

The polymer electrolyte fuel cell converts the chemical energy in a fuel, e.g. hydrogen or methanol, and oxygen into electrical energy. The high efficiency and the possibility to use fuel from renewable sources make them attractive as energy converters in future sustainable energy systems. Great progress has been made in the development of the PEFC during the last decade, but still improved lifetime as well as lowered cost is needed before a broad commercialization can be considered. The electrodes play an important role in this since the cost of platinum used as catalyst constitutes a large part of the total cost for the fuel cell. A large part of the degradation in performance can also be related to the degradation of the porous electrode and a decreased electrochemically active Pt surface.

In this thesis, different fuel cell reactions, catalysts and support materials are investigated with the aim to investigate the possibility to improve the activity, stability and utilisation of platinum in the fuel cell electrodes.

An exchange current density, i0, of 770 mA cm-2Pt was determined for the hydrogen oxidation reaction in the fuel cell with the model electrodes. This is higher than previously found in literature and implies that the kinetic losses on the anode are very small. The anode loading could therefore be reduced without imposing too high potential losses if good mass transport of hydrogen is ensured. It was also shown that the electrochemically active surface area, activity and stability of the electrode can be affected by the support material. An increased activity was observed at higher potentials for Pt deposited on tungsten oxide, which was related to the postponed oxide formation for Pt on WOx. An improved stability was seen for Pt deposited on tungsten oxide and on iridium oxide. A better Pt stability was also observed for Pt on a low surface non-graphitised support compared to a high surface graphitised support. Pt deposited on titanium and tungsten oxide, displayed an enhanced electrochemically active surface area in the cyclic voltammograms, which was explained by the good proton conductivity of the metal oxides. CO-stripping was shown to provide the most reliable measure of the electrochemically active surface area of the electrode in the fuel cell. It was also shown to be a useful tool in characterization of the degradation of the electrodes. In the study of oxidation of small organic compounds, the reaction was shown to be affected by the off transport of reactants and by the addition of chloride impurities. Pt and PtRu were affected differently, which enabled extraction of information about the reaction mechanisms and rate determining steps.

Abstract [sv]

Polymerelektrolytbränslecellen omvandlar den kemiska energin i ett bränsle, exv. vätgas eller metanol, och syrgas  till elektrisk energi. Den höga verkningsgraden samt möjligheten att använda bränsle från förnyelsebara källor gör dem attraktiva som energiomvandlare i framtida hållbara energisystem. En enorm utveckling har skett under det senaste årtiondet men för att kunna introducera polymerelektrolytbränslecellen på marknaden i en större skala måste livstiden öka och kostnaden minska. Elektroderna har en central del i detta då den platina som används som katalysator står för en stor del av kostnaden för bränslecellen. En stor del av prestandaförsämringen med tiden hos bränslecellen kan också relateras till en degradering av den porösa elektroden och en minskad elektrokemiskt aktiv platinayta.

I denna avhandling studeras olika bränslecellsreaktioner samt olika katalysatorer och supportmaterial med målet att undersöka möjligheten att förbättra platinakatalysatorns aktivitet, stabilitet och utnyttjandegrad i bränslecellselektroder.

Utbytesströmtätheten, i0, för vätgasoxidationen i bränslecell bestämdes till 770 mA cm-2Pt genom försök med modellelektroderna. Denna var högre än vad som framkommit tidigare i litteratur, vilket visar att de kinetiska förlusterna på anoden är mycket små. Katalysatormängden på anoden borde därför kunna minskas utan några större potentialförluster så länge masstransporten av vätgas är tillräcklig. Den elektrokemiskt aktiva ytan, aktiviteten och stabiliteten hos elektroden visade sig kunna påverkas av supportmaterialet. Platina deponerad på volfram oxid hade en högre aktivitet vid höga potentialer vilket relaterades till den förskjutna oxidbildningen på ytan. Elektroder med platina på volframoxid och iridiumoxid var mer stabila än elektroder med platina på kol. Det var även platina på ett icke grafitiserat kol med låg yta jämfört med platina på grafitiserade kol med en hög yta. Platina på metalloxidskikt av volfram och titan visade en högre elektrokemiskt aktiv yta i de cykliska voltamogrammen än platina på kol, vilket förklarades med att båda metalloxiderna har en bra protonledningsförmåga. CO-stripping gav det säkraste måttet på den elektrokemiskt aktiva ytan i en elektrod i bränslecell. CO-stripping visade sig även vara användbart för karaktärisering av degraderingen av en elektrod. Oxidationen av små organiska föreningar påverkades av borttransporten av intermediärer samt av kloridföroreningar. Pt aoch PtRu påverkades olika vilket gjorde det möjligt att få fram information om reaktionsmekanismer och hastighetsbestämmande steg.

Place, publisher, year, edition, pages
Stockholm: KTH, 2010. 55 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2010:40
Keyword
Fuel cell, model electrodes, oxygen reduction, methanol oxidation, formic acid oxidation, hydrogen oxidation, CO oxidation, degradation, tungsten oxide, carbon support, Bränslecell, modellelektroder, syrgasreduktion, metanoloxidation, myrsyraoxidation, vätgasoxidation, CO oxidation, degradering, wolfram oxid, kolsupport
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-25267 (URN)978-91-7415-747-5 (ISBN)
Public defence
2010-10-25, F3, Lindstedts väg 26, KTH, Stockholm, 10:00 (English)
Opponent
Note
QC 20101014Available from: 2010-10-14 Created: 2010-10-14 Last updated: 2010-12-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopusEEC Transactions

Authority records BETA

Lagergren, CarinaLindbergh, Göran

Search in DiVA

By author/editor
Wesselmark, MariaLagergren, CarinaLindbergh, Göran
By organisation
Applied Electrochemistry
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 63 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf