Change search
ReferencesLink to record
Permanent link

Direct link
The Molecular Surface Structure of Ammonium and Potassium Dinitramide: A Vibrational Sum Frequency Spectroscopy and Quantum Chemical Study
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface Chemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.ORCID iD: 0000-0003-2673-075X
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Corrosion Science.
2011 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 115, no 21, 10588-10596 p.Article in journal (Refereed) Published
Abstract [en]

Vibrational sum frequency spectroscopy (VSFS) and quantum chemical modeling have been employed to investigate the molecular surface structure of ammonium and potassium dinitramide (ADN and KDN) crystals. Identification of key vibrational modes was made possible by performing density functional theory calculations of molecular clusters. The surface of KDN was found to be partly covered with a thin layer of the decomposition product KNO3, which due to its low thickness was not detectable by infrared and Raman spectroscopy. In contrast, ADN exhibited an extremely inhomogeneous surface, on which polarized dinitramide anions were present, possibly together with a thin layer of NH4NO3. The intertwined use of theoretical and experimental tools proved indispensable in the analysis of these complex surfaces. The experimental verification of polarized and destabilized dinitramide anions stresses the importance of designing surface-active polymer support, stabilizers, and/or coating agents, in order to enable environmentally friendly ADN-based solid-rocket propulsion.

Place, publisher, year, edition, pages
2011. Vol. 115, no 21, 10588-10596 p.
Keyword [en]
National Category
Chemical Sciences
URN: urn:nbn:se:kth:diva-25888DOI: 10.1021/jp110050fISI: 000290914700037ScopusID: 2-s2.0-79957854287OAI: diva2:360479
Swedish Research CouncilEU, FP7, Seventh Framework Programme, FP7-PEOPLE-ERG-2008
QC 20101103 Uppdaterad från submitted till published (20110627)Available from: 2010-11-03 Created: 2010-11-03 Last updated: 2011-06-27Bibliographically approved
In thesis
1. Green Propellants
Open this publication in new window or tab >>Green Propellants
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

To enable future environmentally friendly access to space by means of solid rocket propulsion a viable replacement to the hazardous ammonium perchlorate oxidizer is needed. Ammonium dinitramide (ADN) is one of few such compounds currently known. Unfortunately compatibility issues with many polymer binder systems and unexplained solid-state behavior have thus far hampered the development of ADN-based propellants.

Chapters one, two and three offer a general introduction to the thesis, and into relevant aspects of quantum chemistry and polymer chemistry.

Chapter four of this thesis presents extensive quantum chemical and spectroscopic studies that explain much of ADN’s anomalous reactivity, solid-state behavior and thermal stability. Polarization of surface dinitramide anions has been identified as the main reason for the decreased stability of solid ADN, and theoretical models have been developed to explain and predict the solid-state stability of general dinitramide salts. Experimental decomposition characteristics for ADN, such as activation energy and decomposition products, have been explained for different physical conditions. The reactivity of ADN towards many chemical groups is explained by ammonium-mediated conjugate addition reactions. It is predicted that ADN can be stabilized by changing the surface chemistry with additives, for example by using hydrogen bond donors, and by trapping radical intermediates using suitable amine-functionalities.

Chapter five presents several conceptual green energetic materials (GEMs), including different pentazolate derivatives, which have been subjected to thorough theoretical studies. One of these, trinitramide (TNA), has been synthesized and characterized by vibrational and nuclear magnetic resonance spectroscopy.

Finally, chapter six covers the synthesis of several polymeric materials based on polyoxetanes, which have been tested for compatibility with ADN. Successful formation of polymer matrices based on the ADN-compatible polyglycidyl azide polymer (GAP) has been demonstrated using a novel type of macromolecular curing agent. In light of these results further work towards ADN-propellants is strongly encouraged.

Place, publisher, year, edition, pages
Stockholm: KTH, 2010. 77 p.
Trita-CHE-Report, ISSN 1654-1081 ; 2010:43
Quantum chemistry, reaction kinetics, ammonium dinitramide, high energy density materials, rocket propellants, chemical spectroscopy, polymer synthesis
National Category
Theoretical Chemistry Physical Chemistry
urn:nbn:se:kth:diva-25835 (URN)978-91-7415-758-1 (ISBN)
Public defence
2010-11-23, F1, Lindstedtsvägen 22, KTH, Stockholm, 09:30 (English)
QC 20101103Available from: 2010-11-03 Created: 2010-11-02 Last updated: 2011-03-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Rahm, MartinTyrode, EricBrinck, ToreJohnson, Magnus
By organisation
Physical ChemistrySurface ChemistryCorrosion Science
In the same journal
The Journal of Physical Chemistry C
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 100 hits
ReferencesLink to record
Permanent link

Direct link