Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Algebraic C*-actions and inverse kinematics
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Let X be a smooth quadric of dimension 2m in P2m+1C and let Y,Z X be subvarietiesboth of dimension m which intersect transversely. In this paper we give an algorithm forcomputing the intersection points of Y  Z based on a homotopy method. The homotopyis constructed using a C*-action on X whose fixed points are isolated, which inducesthe so-called Bialynicki-Birula decompositions of X into locally closed invariant subsets.Notably, the homotopy has the optimal number of solution paths. As an applicationwe present a new solution to the inverse kinematics problem of a general six-revoluteserial-link manipulator.

National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-26112OAI: oai:DiVA.org:kth-26112DiVA: diva2:370137
Note
QC 20101115Available from: 2010-11-15 Created: 2010-11-15 Last updated: 2010-11-15Bibliographically approved
In thesis
1. Topics in computation, numerical methods and algebraic  geometry
Open this publication in new window or tab >>Topics in computation, numerical methods and algebraic  geometry
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis concerns computation and algebraic geometry. On the computational side we have focused on numerical homotopy methods. These procedures may be used to numerically solve systems of polynomial equations. The thesis contains four papers.

In Paper I and Paper II we apply continuation techniques, as well as symbolic algorithms, to formulate methods to compute Chern classes of smooth algebraic varieties. More specifically, in Paper I we give an algorithm to compute the degrees of the Chern classes of smooth projective varieties and in Paper II we extend these ideas to cover also the degrees of intersections of Chern classes.

In Paper III we formulate a numerical homotopy to compute the intersection of two complementary dimensional subvarieties of a smooth quadric hypersurface in projective space. If the two subvarieties intersect transversely, then the number of homotopy paths is optimal. As an application we give a new solution to the inverse kinematics problem of a six-revolute serial-link mechanism.

Paper IV is a study of curves on certain special quartic surfaces in projective 3-space. The surfaces are invariant under the action of a finite group called the level (2,2) Heisenberg group. In the paper, we determine the Picard group of a very general member of this family of quartics. We have found that the general Heisenberg invariant quartic contains 320 smooth conics and we prove that in the very general case, this collection of conics generates the Picard group.

Place, publisher, year, edition, pages
Stockholm: KTH, 2010. v, 20 p.
Series
Trita-MAT. MA, ISSN 1401-2278 ; 10:13
National Category
Mathematics
Identifiers
urn:nbn:se:kth:diva-25941 (URN)978-91-7415-770-3 (ISBN)
Public defence
2010-11-29, Sal F3, Lindstedtsvägen 26, KTH, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
QC 20101115Available from: 2010-11-15 Created: 2010-11-05 Last updated: 2010-11-15Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Eklund, David
By organisation
Mathematics (Div.)
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 55 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf