Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
First-Principles Study of Electron Transport in Single-Walled Carbon Nanotubesthat are 2 to 22 nm in Length.
KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).ORCID iD: 0000-0003-0007-0394
(English)Article in journal (Other academic) Submitted
National Category
Industrial Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-27007OAI: oai:DiVA.org:kth-27007DiVA: diva2:374283
Note
QS 20120327Available from: 2010-12-03 Created: 2010-12-03 Last updated: 2012-03-27Bibliographically approved
In thesis
1. A generalized quantum chemical approach for nano- and bio-electronics
Open this publication in new window or tab >>A generalized quantum chemical approach for nano- and bio-electronics
2005 (English)Licentiate thesis, comprehensive summary (Other scientific)
Abstract [en]

A generalized quantum chemical approach for electron transport in molecular devices is developed. It allows to treat the devices where the metal electrodes and the molecule are either chemically or physically bonded on equal footing. Effects of molecular length and hydrogen bonding on the current-voltage (I-V) characteristics of molecular devices are discussed. An extension to include the vibration motions of the molecule has been derived and implemented. It provides the inelastic electron tunneling spectroscopy (IETS) of molecular devices with unprecedented accuracy, and reveals important information about the molecular structures that are not accessible in the experiment. The IETS is shown to be a powerful characterization tool for molecular devices.

An effective elongation method has been developed to study the electron transport in nanoand bio-electronic devices at hybrid density functional theory level. It enables to study electronic structures and transportation properties of a 40 nm long self-assembled conjugated polymer junction, a 21 nm long single-walled carbon nanotubes (SWCNT), and a 60 basepairs DNA molecule. It is the first time that systems consisting of more than 10,000 electrons have been described at such a sophisticated level. The calculations have shown that the electron transport in sub-22 nm long SWCNT and short DNA molecules is dominated by the coherent scattering through the delocalized unoccupied states. The derived length dependence of coherent electron transport in these nanostructured systems will be useful for the future experiments. Moreover, some unexpected behaviors of these devices have been discovered.

Place, publisher, year, edition, pages
Stockholm: KTH, 2005. 48 p.
Keyword
Biotechnology, Bioteknik
National Category
Industrial Biotechnology
Identifiers
urn:nbn:se:kth:diva-286 (URN)91-7178-022-X (ISBN)
Presentation
2005-05-24, Sal FB53, AlbaNova, 10:00
Opponent
Supervisors
Note
QC 20101203Available from: 2005-07-06 Created: 2005-07-06 Last updated: 2011-11-23Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Luo, Yi

Search in DiVA

By author/editor
Jiang, JunLuo, Yi
By organisation
Theoretical Chemistry (closed 20110512)
Industrial Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf