Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Study of [Dy(eta(6)-p-xylene)(GaCl4)(3)]-incorporated polyhedral silica nanofoam
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry.
Institute for Surface Chemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry.
2010 (English)In: Microporous and Mesoporous Materials, ISSN 1387-1811, E-ISSN 1873-3093, Vol. 132, no 3, 480-486 p.Article in journal (Refereed) Published
Abstract [en]

Preparation and characterization of organometallic dysprosium complex embedded polyhedral silica nanofoam (PNE-SiO2) is reported. The nanoporous solid was obtained via a sol-gel process involving precipitation of polymer micelles, hydrolysis and condensation of silica by swelling of triblock copolymer template micelles of PEO-PPO-PEO at acidic pH using high oil concentration and fast stirring. Metal-complex incorporation was performed via wet impregnation (WI) at higher temperature, where the dysprosium complex is chemically bound to the silanol groups of the silica foam surface. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) revealed that the particles of the organometallic complex are evenly distributed on the walls of the polyhedral cells, while nitrogen adsorption/desorption measurements (BET) verified that the characteristic meso- and macrocell structure of PNE-SiO2 composed of polyhedral cells of silica joined at mesosized windows are preserved also after incorporation.

Place, publisher, year, edition, pages
2010. Vol. 132, no 3, 480-486 p.
Keyword [en]
Polyhedral silica foam, Nanoporous materials, Wet impregnation, Dysprosium
Identifiers
URN: urn:nbn:se:kth:diva-27151DOI: 10.1016/j.micromeso.2010.03.030ISI: 000278629100023Scopus ID: 2-s2.0-77953289093OAI: oai:DiVA.org:kth-27151DiVA: diva2:375064
Note
QC 20101207Available from: 2010-12-07 Created: 2010-12-07 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Synthesis, Characterization and Application of Multiscale Porous Materials
Open this publication in new window or tab >>Synthesis, Characterization and Application of Multiscale Porous Materials
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis work brings fresh insights and improved understanding of nanoscale materials through introducing new hybrid composites, 2D hexagonal in MCM-41 and 3D random interconnected structures of different materials, and application relevance for developing fields of science, such as fuel cells and solar cells.New types of porous materials and organometallic crystals have been prepared and characterized in detail. The porous materials have been used in several studies: as hosts to encapsulate metal-organic complexes; as catalyst supports and electrode materials in devices for alternative energy production. The utility of the new porous materials arises from their unique structural and surface chemical characteristics as demonstrated here using various experimental and theoretical approaches.New single crystal structures and arene-ligand exchange properties of f-block elements coordinated to ligand arene and halogallates are described in Paper I. These compounds have been incorporated into ordered 2D-hexagonal MCM-41 and polyhedral silica nanofoam (PNF-SiO2) matrices without significant change to the original porous architectures as described in Paper II and III. The resulting inorganic/organic hybrids exhibited enhanced luminescence activity relative to the pure crystalline complexes.A series of novel polyhedral carbon nanofoams (PNF-C´s) and inverse foams were prepared by nanocasting from PNF-SiO2’s. These are discussed in Paper IV. The synthesis conditions of PNF-C’s were systematically varied as a function of the filling ratio of carbon precursor and their structures compared using various characterization methods. The carbonaceous porous materials were further tested in Paper V and VI as possible catalysts and catalyst supports in counter- and working electrodes for solar- and fuel cell applications.

Place, publisher, year, edition, pages
Stockholm: KTH, 2010. 58 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2010:3
National Category
Inorganic Chemistry
Identifiers
urn:nbn:se:kth:diva-27158 (URN)978-91-7415-830-4 (ISBN)
Public defence
2010-12-14, D3, Lindstedtsvägen 5, entréplan, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20101207Available from: 2010-12-07 Created: 2010-12-07 Last updated: 2010-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hussami, LindaKloo, Lars
By organisation
Inorganic Chemistry
In the same journal
Microporous and Mesoporous Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 53 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf