Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Polyhedral carbon nanofoams with minimum surface area partitions produced using silica nanofoams as templates
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry.
Institution of Surface Chemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry.
2010 (English)In: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 48, no 11, 3121-3130 p.Article in journal (Refereed) Published
Abstract [en]

Polyhedral silica nanofoam (PNF-SiO2) analogues of dry soap froths with minimal surface area were used as templates for making polyhedral carbon nanofoams (PNF-C). Furfuryl alcohol or triblock copolymers were used as carbon sources. The volume of carbon precursor relative to the internal pore volume of PNF-SiO2's was systematically varied between 50% and 100% in order to investigate the effect of filling fraction on internal structure of the corresponding PNF-C's. Transmission electron microscopy, small-angle X-ray scattering and nitrogen physisorption were used to characterize the samples. To aid the interpretation of the experimental data, a model for X-ray scattering from spherical shells was used to approximate scattering from the polyhedral foam cells. PNF-C's cast from the PNF-SiO2's, displayed the characteristic Plateau borders of minimal surface area foams defining interconnected, slit-like pore systems at all filling fractions. At relatively high filling fractions, inverse foam structures were obtained with the slit-like pores systems interpenetrating aggregated, close-packed, relatively low density polyhedral carbon nanoparticles co-joined by carbon struts. At relatively low filling fractions, polyhedral carbon nanofoams with relatively thin, fused double-wall structures and interconnected polyhedral pore systems were obtained.

Place, publisher, year, edition, pages
2010. Vol. 48, no 11, 3121-3130 p.
Keyword [en]
MOLECULAR-SIEVES, ELECTRON CRYSTALLOGRAPHY, MESOPOROUS SILICA, ADSORPTION
National Category
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-27154DOI: 10.1016/j.carbon.2010.04.049ISI: 000279984600013Scopus ID: 2-s2.0-79955011698OAI: oai:DiVA.org:kth-27154DiVA: diva2:375072
Funder
Swedish Research Council
Note
QC 20101207Available from: 2010-12-07 Created: 2010-12-07 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Synthesis, Characterization and Application of Multiscale Porous Materials
Open this publication in new window or tab >>Synthesis, Characterization and Application of Multiscale Porous Materials
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis work brings fresh insights and improved understanding of nanoscale materials through introducing new hybrid composites, 2D hexagonal in MCM-41 and 3D random interconnected structures of different materials, and application relevance for developing fields of science, such as fuel cells and solar cells.New types of porous materials and organometallic crystals have been prepared and characterized in detail. The porous materials have been used in several studies: as hosts to encapsulate metal-organic complexes; as catalyst supports and electrode materials in devices for alternative energy production. The utility of the new porous materials arises from their unique structural and surface chemical characteristics as demonstrated here using various experimental and theoretical approaches.New single crystal structures and arene-ligand exchange properties of f-block elements coordinated to ligand arene and halogallates are described in Paper I. These compounds have been incorporated into ordered 2D-hexagonal MCM-41 and polyhedral silica nanofoam (PNF-SiO2) matrices without significant change to the original porous architectures as described in Paper II and III. The resulting inorganic/organic hybrids exhibited enhanced luminescence activity relative to the pure crystalline complexes.A series of novel polyhedral carbon nanofoams (PNF-C´s) and inverse foams were prepared by nanocasting from PNF-SiO2’s. These are discussed in Paper IV. The synthesis conditions of PNF-C’s were systematically varied as a function of the filling ratio of carbon precursor and their structures compared using various characterization methods. The carbonaceous porous materials were further tested in Paper V and VI as possible catalysts and catalyst supports in counter- and working electrodes for solar- and fuel cell applications.

Place, publisher, year, edition, pages
Stockholm: KTH, 2010. 58 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2010:3
National Category
Inorganic Chemistry
Identifiers
urn:nbn:se:kth:diva-27158 (URN)978-91-7415-830-4 (ISBN)
Public defence
2010-12-14, D3, Lindstedtsvägen 5, entréplan, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20101207Available from: 2010-12-07 Created: 2010-12-07 Last updated: 2010-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hussami, LindaKloo, Lars
By organisation
Inorganic Chemistry
In the same journal
Carbon
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 101 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf