Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Broadband coupler between silicon waveguide and hybrid plasmonic waveguide
KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Quantum Electronics and Quantum Optics, QEO.
KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Photonics.
KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Photonics.
KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Photonics.ORCID iD: 0000-0002-3368-9786
Show others and affiliations
2010 (English)In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 18, no 12, 13173-13179 p.Article in journal (Refereed) Published
Abstract [en]

Efficient broadband coupling of light between a dielectric waveguide and a hybrid plasmonic waveguide is investigated theoretically. A plasmonic linear taper is used as a coupler which connects the two types of waveguides. Broadband coupling is realized by such a compact plasmonic taper with a length of only 0.4 mu m, which achieves a coupling efficiency of 70% (1.5dB) at the 1.55 mu m telecommunication wavelength. (C) 2010 Optical Society of America

Place, publisher, year, edition, pages
2010. Vol. 18, no 12, 13173-13179 p.
National Category
Atom and Molecular Physics and Optics
Identifiers
URN: urn:nbn:se:kth:diva-27321ISI: 000278527700120Scopus ID: 2-s2.0-77953605680OAI: oai:DiVA.org:kth-27321DiVA: diva2:376009
Note
QC 20101209Available from: 2010-12-09 Created: 2010-12-09 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Plasmonic waveguides and resonators for optical communication applications
Open this publication in new window or tab >>Plasmonic waveguides and resonators for optical communication applications
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Photonic circuits can transmit data signals in a much higher speed thanconventional electronic circuits. However, miniaturization of photonic circuitsand devices is hindered by the existence of light diffraction limit. A promisingsolution to this problem is by exploiting plasmonic systems for guiding andmanipulating signals at optical frequencies. Plasmonic devices are generallycomposed of noble metals and dielectrics, whose interfaces can confine surfaceplasmon polaritons, a hybrid wave that is free of diffraction limit. Plasmonicwaveguides and devices are serious contenders for achieving next-generationphotonic integrated circuits with a density comparable to the electronic counterpart.

This thesis addresses the design issues of passive plasmonic devices whichare critical for realization of photonic integration, including plasmonic waveguides,splitters, couplers, and resonators, investigated with both the finitedifferencetime-domain method and the finite-element method. In particularwe present, firstly, a coupler which efficiently couples light between a silicondielectric waveguide and a hybrid plasmonic (HP) waveguide. A coupling efficiencyas high as 70% is realized with a HP taper as short as 0.4μm. Theexperimental result agrees well with the numerical simulation. Secondly, wenumerically investigate and optimize the performances of 1×2 and 1×3 HPmultimode interferometers (MMIs), which split light from a silicon waveguideto multiple HP waveguides. Total transmission over 75% can be achieved inboth cases. Thirdly, we study the coupling and crosstalk issues in plasmonicwaveguide systems. Several methods for crosstalk reduction are proposed.Finally, HP nanodisk micro-cavities are designed and are numerically characterized.With a radius of 1μm, a high quality factor of 819 and a highPurcell factor of 1827 can be simultaneously achieved, which can be useful forrealizing efficient nano-lasers.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. xi, 60 p.
Series
Trita-ICT/MAP AVH, ISSN 1653-7610 ; 2011:10
Keyword
Plasmonic
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-33596 (URN)978-91-7501-015-1 (ISBN)
Public defence
2011-06-07, sal C1, Electrum, Kungl Tekniska Högskolan,Isafjordsgatan 26, Kista, Stockholm, 14:13 (English)
Opponent
Supervisors
Note
QC 20110523Available from: 2011-05-23 Created: 2011-05-11 Last updated: 2011-05-23Bibliographically approved

Open Access in DiVA

No full text

Scopus

Authority records BETA

Yan, Min

Search in DiVA

By author/editor
Song, YiWang, JingLi, QiangYan, MinQiu, Min
By organisation
Quantum Electronics and Quantum Optics, QEOPhotonics
In the same journal
Optics Express
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 252 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf