Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rotational Doppler effect in x-ray photoionization
KTH, School of Biotechnology (BIO), Theoretical Chemistry.
KTH, School of Biotechnology (BIO), Theoretical Chemistry.
KTH, School of Biotechnology (BIO), Theoretical Chemistry.
2010 (English)In: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 82, no 5, 052506- p.Article in journal (Refereed) Published
Abstract [en]

The energy of the photoelectron experiences a red or blue Doppler shift when the molecule recedes from the detector or approaches him. This results in a broadening of the photoelectron line due to the translational thermal motion. However, the molecules also have rotational degrees of freedom and we show that the translational Doppler effect has its rotational counterpart. This rotational Doppler effect leads to an additional broadening of the spectral line of the same magnitude as the Doppler broadening caused by translational thermal motion. The rotational Doppler broadening as well as the rotational recoil broadening is sensitive to the molecular orbital from which the photoelectron is ejected. This broadening should be taken into account in analysis of x-ray photoemission spectra of super-high resolution and it can be directly observed using x-ray pump-probe spectroscopy.

Place, publisher, year, edition, pages
2010. Vol. 82, no 5, 052506- p.
Keyword [en]
FREE-ELECTRON LASER, PHOTOELECTRON-SPECTROSCOPY, RAMAN-SCATTERING, FINE-STRUCTURE, DISTRIBUTIONS, INTERFERENCE, DEPENDENCE, RADIATION, THRESHOLD, SPECTRA
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-27055DOI: 10.1103/PhysRevA.82.052506ISI: 000284044500004Scopus ID: 2-s2.0-78649588474OAI: oai:DiVA.org:kth-27055DiVA: diva2:376989
Note
QC 20101213Available from: 2010-12-13 Created: 2010-12-06 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Spontaneous and stimulated X-ray Raman scattering
Open this publication in new window or tab >>Spontaneous and stimulated X-ray Raman scattering
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The present thesis is devoted to theoretical studies of resonant X-ray scattering and propagation of strong X-ray pulses. In the first part of the thesis the nuclear dynamics of different molecules is studied using resonant X-ray Raman and resonant Auger scattering techniques. We show that the shortening of the scattering duration by the detuning results in a purification of the Raman spectra from overtones and soft vibrational modes. The simulations are in a good agreement with measurements, performed at the MAX-II and the Swiss Light Source with vibrational resolution. We explain why the scattering to the ground state nicely displays the vibrational structure of liquid acetone in contrast to excited final state. Theory of resonant X-ray scattering by liquids is developed. We show that, contrary to aqueous acetone, the environmental broadening in pure liquid acetone is twice smaller than the broadening by soft vibrational modes significantly populated at room temperature. Similar to acetone, the "elastic" band of X-ray Raman spectra of molecular oxygen is strongly affected by the Thomson scattering. The Raman spectrum demonstrates spatial quantum beats caused by two interfering wave packets with different momenta as the oxygen atoms separate. It is found that the vibrational scattering anisotropy caused by the interference of the "inelastic" Thomson and resonant scattering channels in O2. A new spin selection rule is established in inelastic X-ray Raman spectra of O2. It is shown that the breakdown of the symmetry selection rule based on the parity of the core hole, as the core hole and excited electron swap parity. Multimode calculations explain the two thresholds of formation of the resonant Auger spectra of the ethene molecule by the double-edge structure of absorption spectrum caused by the out-of- and in-plane modes. We predict the rotational Doppler effect and related broadening of X-ray photoelectron and resonant Auger spectra, which has the same magnitude as its counterpart-the translational Doppler effect. The second part of the thesis explores the interaction of the medium with strong X-ray free-electron laser (XFEL) fields. We perform simulations of nonlinear propagation of femtosecond XFEL pulses in atomic vapors by solving coupled Maxwell's and density matrix equations. We show that self-seeded stimulated X-ray Raman scattering strongly influences the temporal and spectral structure of the XFEL pulse. The generation of Stokes and four-wave mixing fields starts from the seed field created during pulse propagation due to the formation of extensive ringing pattern with long spectral tail. We demonstrate a compression into the attosecond region and a slowdown of the XFEL pulse up to two orders of magnitude. In the course of pulse propagation, the Auger yield is strongly suppressed due to the competitive channel of stimulated emission. We predict a strong X-ray fluorescence from the two-core-hole states of Ne created in the course of the two-photon X-ray absorption.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. viii, 71 p.
Series
Trita-BIO-Report, ISSN 1654-2312 ; 2011:8
Keyword
resonant X-ray scattering, resonant Auger scattering, rotational Doppler broadening, XFEL pulse
National Category
Atom and Molecular Physics and Optics Analytical Chemistry
Identifiers
urn:nbn:se:kth:diva-32859 (URN)978-91-7415-925-7 (ISBN)
Public defence
2011-05-13, FA32, AlbaNova, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20110426Available from: 2011-04-26 Created: 2011-04-21 Last updated: 2011-11-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Sun, YupingWang, ChuankuiGel'mukhanov, Faris
By organisation
Theoretical Chemistry
In the same journal
Physical Review A. Atomic, Molecular, and Optical Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 120 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf