Change search
ReferencesLink to record
Permanent link

Direct link
Structure dependent quantum confinement effect in hydrogen-terminated nanodiamond clusters
KTH, School of Biotechnology (BIO), Theoretical Chemistry.
KTH, School of Biotechnology (BIO), Theoretical Chemistry.
Show others and affiliations
2010 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 108, no 9, 094303- p.Article in journal (Refereed) Published
Abstract [en]

Size-dependent quantum confinement effect on electronic structure of hydrogen-terminated carbon nanodiamond (ND) cluster has been investigated at the hybrid density functional theory level. Large scale all-electron calculations have been carried out for ND clusters of 0.76 nm (29 carbons) to 7.3 nm (20 959 carbons) in diameter. It is demonstrated that the quantum confinement effect in these clusters shows strong structural dependence. An important structural factor, describing the ratio between the number of atoms within the inner core and outer shell of the cluster, is identified which dictates the size-dependent behavior of the electronic states. For ND clusters with diameter smaller than 1.5 nm, the core-shell ratio changes fast with the increase in cluster size, and the evolution of electronic properties does not follow conventional quantum confinement models. For ND clusters exceeding the threshold of 1.5 nm in diameter, the change in the core-shell ratio saturates and quantum confinement effect becomes visible. Electronic states within the inner core and surface show different size dependence, but a general formula is proposed and describes their structure dependent quantum confinement effects. This formula provides useful insights into quantum confinement behavior in ND clusters, and thereby leads to important physical property information. The calculated electron effective masses for core and surface states of ND clusters are in very good agreement with the experiments.

Place, publisher, year, edition, pages
2010. Vol. 108, no 9, 094303- p.
Keyword [en]
small semiconductor crystallites, electronic-properties, nanocrystals, diamond, silicon, spectroscopy, simulation
National Category
Theoretical Chemistry
URN: urn:nbn:se:kth:diva-27370DOI: 10.1063/1.3503365ISI: 000284270900118ScopusID: 2-s2.0-78649239147OAI: diva2:376995
QC 20101213Available from: 2010-12-13 Created: 2010-12-13 Last updated: 2010-12-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Jiang, JunGao, BinLuo, Yi
By organisation
Theoretical Chemistry
In the same journal
Journal of Applied Physics
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 28 hits
ReferencesLink to record
Permanent link

Direct link