Change search
ReferencesLink to record
Permanent link

Direct link
The spectral energy distribution of fermi bright blazars
Show others and affiliations
2010 (English)In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 716, no 1, 30-70 p.Article in journal (Refereed) Published
Abstract [en]

We have conducted a detailed investigation of the broadband spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/gamma-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log nu-log nu F-nu representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low-and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, alpha(ro), and optical to X-ray, alpha(ox), spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency (nu(S)(peak)) is positioned between 10(12.5) and 10(14.5) Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10(13) and 10(17) Hz in featureless BL Lacertae objects. We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter gamma-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum gamma-ray sources, the correlation between nu(S)(peak) and gamma-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars.

Place, publisher, year, edition, pages
2010. Vol. 716, no 1, 30-70 p.
Keyword [en]
BL Lacertae objects: general, galaxies: active, gamma rays: galaxies, quasars: general, radiation mechanisms: non-thermal
National Category
Astronomy, Astrophysics and Cosmology
URN: urn:nbn:se:kth:diva-27598DOI: 10.1088/0004-637X/716/1/30ISI: 000277960000002ScopusID: 2-s2.0-77952931352OAI: diva2:377366

QC 20101214

Available from: 2010-12-14 Created: 2010-12-13 Last updated: 2016-04-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Axelsson, MagnusJackson, MirandaRyde, FelixYlinen, Tomi
By organisation
Particle and Astroparticle Physics
In the same journal
Astrophysical Journal
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 129 hits
ReferencesLink to record
Permanent link

Direct link