Change search
ReferencesLink to record
Permanent link

Direct link
Distance and Driving Force Dependencies of Electron Injection and Recombination Dynamics in Organic Dye-Sensitized Solar Cells
KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.ORCID iD: 0000-0002-4521-2870
Show others and affiliations
2010 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 114, no 45, 14358-14363 p.Article in journal (Refereed) Published
Abstract [en]

A series of dyes based on a triphenylamine donor and a rhodanine acetic acid anchor/acceptor for solar cell application has been studied with regards to electron injection and recombination kinetics using femtosecond transient absorption The series contains three dyes, with estimated electron transfer distances ranging from 17 2 to 11 0 angstrom and which have shown significant differences in energy conversion efficiencies The injection and recombination kinetics were studied in the NIR region where electrons in the conduction band of the TiO2 are suggested to absorb For all dyes, the injection rate is larger than (200 fs)(-1) which implicates a quantitative injection efficiency Surprisingly, the subsequent recombination reaction has a rate that increases with increasing linker length On the other hand, this behavior is consistent with the concomitant decrease in driving force for this series of dyes Moreover, the lifetimes show exponential distance dependence when corrected for driving force and reorganization energy, which indicates a superexchange interaction between the electrons in TiO2 and the radical cations of the dyes A dependence on probe wavelength of the attenuation factor was found giving a beta value of 0 38 angstrom(-1) at 940 nm and 0 49 angstrom(-1) at 1040 nm The difference is suggested to be due to the difference in electronic coupling between fully separated dye cations and injected electrons versus geminate electron-hole pairs Addition of tert butylpyridine, which from previous work is known to give a substantial drop in the IPCE values for the studied dyes, was found to decrease the amount of long-lived electrons in the TiO2 without affecting the injection rate

Place, publisher, year, edition, pages
2010. Vol. 114, no 45, 14358-14363 p.
Keyword [en]
nanocrystalline tio2 films, charge separation, photovoltaic performance, transient absorption, spectroscopy, linkers, nanoparticles, 4-tert-butylpyridine, particles, energy
National Category
Physical Chemistry
URN: urn:nbn:se:kth:diva-27363DOI: 10.1021/jp1002963ISI: 000284018000030ScopusID: 2-s2.0-78650094770OAI: diva2:377423
QC 20101214Available from: 2010-12-14 Created: 2010-12-13 Last updated: 2010-12-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Marinado, TanniaHagberg, Daniel P.Sun, LichengHagfeldt, Anders
By organisation
Centre of Molecular Devices, CMD
In the same journal
Journal of Physical Chemistry B
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 28 hits
ReferencesLink to record
Permanent link

Direct link