Change search
ReferencesLink to record
Permanent link

Direct link
Oscillatory behaviour in Galvanostatic Formaldehyde Oxidation on Nanostructured Pt/Glassy Carbon Model Electrodes
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0002-0452-0703
Show others and affiliations
2010 (English)In: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 11, no 7, 1405-1415 p.Article in journal (Refereed) Published
Abstract [en]

The electrocatalytic oxidation of formaldehyde, which results in CO, and HCOOH formation, was investigated under galvanostatic conditions on nanostructured Pt/glassy carbon (GC) electrodes fabricated by employing colloidal lithography (CL). The measurements were performed on structurally well-defined model electrodes of different Pt surface coverages under different applied currents (current densities) and at constant electrolyte transport in a thin-layer flow cell connected to a differential electrochemical mass spectrometry (DEMS) setup to monitor the dynamic response of the reaction selectivity under these conditions. Periodic oscillations of the electrode potential and the CO, formation rate appear not only for a continuous Pt film, but also for the nanostructured Pt/GC electrodes when a critical current density is exceeded. The critical current density for achieving regular osillation patterns increased with decreasing Pt nanodisk density. Lower oscillation frequencies of the electrode potential and lower CO2 formation rate for nanostructured Pt/GC electrodes compared to continuous Pt film at similar applied current densities suggest that transport processes play an essential role. Moreover, from the simple periodic response of the nanostructured electrodes it follows that all individual Pt disks in the array oscillate in synchrony. This result is discussed in terms of the different modes of spatial coupling present in the system: global coupling, migration coupling and mass transport of the essential chemical species, and the coverage of corresponding adsorbates.

Place, publisher, year, edition, pages
2010. Vol. 11, no 7, 1405-1415 p.
Keyword [en]
colloidal lithography, electrochemistry formaldehyde, galvanostatic oxidation, surface chemistry
National Category
Chemical Sciences
URN: urn:nbn:se:kth:diva-27553DOI: 10.1002/cphc.200901029ISI: 000278350000009ScopusID: 2-s2.0-77952149907OAI: diva2:378767
QC 20101216Available from: 2010-12-16 Created: 2010-12-13 Last updated: 2010-12-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Lindström, Rakel
By organisation
Applied Electrochemistry
In the same journal
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 23 hits
ReferencesLink to record
Permanent link

Direct link