Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A hybrid high order method for incompressible flow in complex geometries/version
KTH, School of Engineering Sciences (SCI), Mechanics.
KTH, School of Engineering Sciences (SCI), Mechanics.
Show others and affiliations
2005 (English)Report (Other academic)
Place, publisher, year, edition, pages
Stockholm: KTH , 2005. , 51 p.
Series
Trita-MEK, ISSN 0348-467X ; 2005:06
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-27739ISRN: KTH/MEK/TR--04/11--SEOAI: oai:DiVA.org:kth-27739DiVA: diva2:380516
Note
QC 20101221Available from: 2010-12-21 Created: 2010-12-21 Last updated: 2010-12-21Bibliographically approved
In thesis
1. A high order method for simulation of fluid flow in complex geometries
Open this publication in new window or tab >>A high order method for simulation of fluid flow in complex geometries
2005 (English)Licentiate thesis, comprehensive summary (Other scientific)
Abstract [en]

A numerical high order difference method is developed for solution of the incompressible Navier-Stokes equations. The solution is determined on a staggered curvilinear grid in two dimensions and by a Fourier expansion in the third dimension. The description in curvilinear body-fitted coordinates is obtained by an orthogonal mapping of the equations to a rectangular grid where space derivatives are determined by compact fourth order approximations. The time derivative is discretized with a second order backward difference method in a semi-implicit scheme, where the nonlinear terms are linearly extrapolated with second order accuracy.

An approximate block factorization technique is used in an iterative scheme to solve the large linear system resulting from the discretization in each time step. The solver algorithm consists of a combination of outer and inner iterations. An outer iteration step involves the solution of two sub-systems, one for prediction of the velocities and one for solution of the pressure. No boundary conditions for the intermediate variables in the splitting are needed and second order time accurate pressure solutions can be obtained.

The method has experimentally been validated in earlier studies. Here it is validated for flow past a circular cylinder as an example of a physical test case and the fourth order method is shown to be efficient in terms of grid resolution. The method is applied to external flow past a parabolic body and internal flow in an asymmetric diffuser in order to investigate the performance in two different curvilinear geometries and to give directions for future development of the method. It is concluded that the novel formulation of boundary conditions need further investigation.

A new iterative solution method for prediction of velocities allows for larger time steps due to less restrictive convergence constraints.

Place, publisher, year, edition, pages
Stockholm: KTH, 2005. vii, 18 p.
Series
Trita-MEK, ISSN 0348-467X ; 2005:05
Keyword
Technology, Navier-Stokes equations, compact high order difference methods, approximate factorization, curivilinear staggered grids, TEKNIKVETENSKAP
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-322 (URN)
Presentation
2005-05-24, Sal E3, Osquars backe 14, Stockholm, 10:15
Note
QC 20101221Available from: 2005-07-20 Created: 2005-07-20 Last updated: 2010-12-21Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Johansson, Arne V.Henningson, Dan S.

Search in DiVA

By author/editor
Stålberg, ErikBrüger, ArnimJohansson, Arne V.Henningson, Dan S.
By organisation
Mechanics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf