Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electrochemical characterization of electrically induced adhesive debonding
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0001-5816-2924
Stora Enso, Karlstad Research Centre.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0001-9203-9313
2011 (English)In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 158, no 10, P109-P114 p.Article in journal (Refereed) Published
Abstract [en]

This study concerns with controlled debonding of adhesive generated with electricity. This is a concept which could potentially be used in a wide range of applications, such as light-weight automotives, which can be easily recyclable at the touch of a button. The studied material is produced as a laminate with an epoxy adhesive bonded between aluminium foils. An electrochemical investigation of these debonding adhesives was performed. A three-electrode system with a circular quasi-reference electrode was validated and used together with electrical impedance spectroscopy and scanning electron microscope. It was found that the resistance at the debonding anodic interface of the laminate increased during polarization. This increase in resistance was shown to be reversible at open circuit. During the polarization, aluminium compounds were produced at the anode. These compounds grew to penetrate the adhesive. A debonding mechanism based on increasing mechanical stresses at the anodic interface is proposed.

Place, publisher, year, edition, pages
2011. Vol. 158, no 10, P109-P114 p.
Keyword [en]
adhesive bonding, aluminium, anodes, electric resistance, electrochemical impedance spectroscopy, internal stresses, laminates, resins, scanning electron microscopy
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-27758DOI: 10.1149/1.3622657ISI: 000294063000082Scopus ID: 2-s2.0-80052091897OAI: oai:DiVA.org:kth-27758DiVA: diva2:380731
Note

QC 20160427

Available from: 2010-12-22 Created: 2010-12-22 Last updated: 2016-04-27Bibliographically approved
In thesis
1. Electrically Induced Debonding of Adhesives
Open this publication in new window or tab >>Electrically Induced Debonding of Adhesives
2010 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Electrically induced adhesive debonding is a process where an adhesive can be debonded at command with help of an applied voltage. To make this process function, the adhesive is  bonded between two metal substrates. In this study an epoxy adhesive is adhered between two aluminium foils forming a laminate structure. The adhesive is made ionically conductive by an addition of an ionic liquid before the curing. This arrangement forms an electrochemical cell, where the metal substrates act as the electrodes while the ionically conductive adhesive acts as the electrolyte. When a voltage is applied over the laminate, a current passes due to electrochemical reactions at the electrode interfaces and ionic transport in the adhesive.

This type of material can potentially be used in a wide range of applications. This includes making adhesive joints in automotives to both reduce the total weight but also to simplify the disassembly after end-of-life, enabling an inexpensive recycling process. Another potenital use for debondable adhesives is within consumer packaging. Here it could be possible to pack and transport goods using less packaging material as well as making the handling easier.

 The aim of this study was to increase the understanding about the processes leading to debonding. This knowledge is important in the development of new types of debonding adhesives. In this study, the commercial laminate Sinuate® was used as a model system. The experiments were focused on the electrochemical behavior and were performed mainly using galvanostatic polarization and electrochemical impedance spectroscopy. Information about the chemistry of debonding was collected with techniques such as scanning electron microscopy (SEM), mass spectrometry (MS) and Raman spectroscopy. The debonding did always take place at the anodic interface, separating the adhesive and the anode aluminium foil. It was found that the total cell resistance increased drastically during polarization, and that essentially all of this increase originated within the anodic half of the laminate. Examining the resistance behavior with EIS, it was found that the increase in total resistance was reversible.

The anodic  electrochemical reaction during polarization was determined to consist mainly of an oxidation of aluminium, while the major reaction at the cathodic interface was reduction of water into hydrogen. The debonding process, which took place at the anodic interface, could be related to reaction products formed in the polarization process. These products grew out from the anodic aluminium surface into the adhesive. A debonding mechanism is proposed where these products induce an increase in the adhesive volume, causing stresses at the interface which ultimately result in debonding.

 

 

 

Abstract [sv]

Elektriskt framkallad delaminering är en process som gör att en limfog kan fås att släppa på kommando med hjälp av en pålagd elektrisk spänning. För att processen ska fungera måste limmet vara bundet till två metallytor. I den här studien används ett epoxylim, bundet mellan två folier av aluminium, vilket bildar en laminatstruktur. Limmet gjordes jonledande genom en tillsats av en jonvätska innan härdningen. Detta laminat bildar en elektrokemisk cell, där metallytorna agerar som elektroder och limmet som elektrolyt. När en elektrisk spänning läggs över laminatet, uppstår en elektrisk ström till följd av elektrokemiska reaktioner vid elektrodytorna och jontransport i limmet.

 Dessa material skulle kunna användas inom ett brett spektrum av användningsområden. Exempel på detta är användandet av limmade fogar i fordon, vilket skulle både minska fordonens vikt och underlätta demonteringen efter livscykelns slut. En förenklad demontering skulle resultera i en billig återvinningsprocess. Andra exempel på användningsområden för elektriskt släppbara limmer är konsumentförpackningar. Inom detta område skulle varor kunna packas med mindre mängd förpackningsmaterial och hanteringen under transport och uppackning skulle kunna förenklas.

 Målet med det här arbetet var att öka förståelsen kring processerna som leder till delaminering. Dessa kunskaper är viktiga för utvecklande av nya sorter av elektriskt släppande limmer. Det kommersiella laminatet Sinuate® användes som ett modellsystem. Experimenten fokuserades kring elektrokemin och utfördes främst med galvanostatisk polarisering och elektrokemisk impedansspektroskopi (EIS). Information om släpprocessens kemi inhämtades med tekniker som svepelektronmikroskopi (SEM), masspektrometri (MS) och Raman-spektroskopi. Det upptäcktes att delamineringen alltid skedde i det anodiska gränsskiktet, på så sätt att aluminiumfolien och limytan separerades. Polarisationsprocessen ledde till en drastisk ökning av den totala cellresistansen och större delen av denna härrörde sig från den anodiska delen av laminatet. Denna ökning i resistans fanns vara reversibel genom att använda EIS. Den elektrokemiska reaktionen vid anoden bestod till största delen av en oxidation av aluminium, medan den katodiska reaktionen bestod av en reduktion av vatten till vätgas. Processerna som ledde till släpp i det anodiska gränsskitet kunde härledas till SEM-resultaten, där reaktionsprodukter observerades. Dessa produkter växte ut från aluminiumytan och in i limmet. En släppmekanism föreslås, där de bildade produkterna orsakar en volymsökning i limmet, vilket leder till spänningar i gränsskiktet som i sin tur gör att limmet släpper.

 

Place, publisher, year, edition, pages
Stockholm: KTH, 2010. viii, 23 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2010:52
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-27742 (URN)978-91-7415-815-1 (ISBN)
Presentation
2010-12-12, D3, Lindstedtsvägen 5, Stockholm, 10:30
Opponent
Supervisors
Note
QC 20101222Available from: 2010-12-22 Created: 2010-12-21 Last updated: 2010-12-22Bibliographically approved
2. Preparation and Characterization of Electrochemical Devices for Energy Storage and Debonding
Open this publication in new window or tab >>Preparation and Characterization of Electrochemical Devices for Energy Storage and Debonding
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Within the framework of this thesis, three innovative electrochemical devices have been studied. A part of the work is devoted to an already existing device, laminates which are debonded by the application of a voltage. This type of material can potentially be used in a wide range of applications, including adhesive joints in vehicles to both reduce the total weight and to simplify the disassembly after end-of-life, enabling an inexpensive recycling process. Although already a functioning device, the development and tailoring of this process was slowed by a lack of knowledge concerning the actual electrochemical processes responsible for the debonding. The laminate studied consisted of an epoxy adhesive, mixed with an ionic liquid, bonding two aluminium foils. The results showed that the electrochemical reaction taking place at the releasing anode interface caused a very large increase in potential during galvanostatic polarization. Scanning electron microscopy images showed reaction products growing out from the electrode surface into the adhesive. These reaction products were believed to cause the debonding through swelling of the anodic interface so rupturing the adhesive bond.

The other part of the work in this thesis was aimed at innovative lithium ion (Li‑ion) battery concepts. Commercial Li-ion batteries are two-dimensional thin film constructions utilized in most often mechanically rigid products. Two routes were followed in this thesis. In the first, the aim was flexible batteries that could be used in applications such as bendable reading devices. For this purpose, nano-fibrillated cellulose was used as binder material to make flexible battery components. This was achieved through a water-based filtration process, creating flexible and strong papers. These paper-based battery components showed good mechanical properties as well as good rate capabilities during cycling. The drawback using this method was relatively low coulombic efficiencies believed to originate from side-reactions caused by water remnants in the cellulose structure. The second Li-ion battery route comprised an electrochemical process to coat carbon fibers, shown to perform well as negative electrode in Li-ion batteries, from a monomer solution. The resulting polymer coatings were ~500 nm thick and contained lithium ions. This process could be controlled by mainly salt content in the monomer solution and polarization time, yielding thin and apparently pin-hole free coatings. By utilizing the carbon fiber/polymer composite as integrated electrode and electrolyte, a variety of battery designs could possibly be created, such as three-dimensional batteries and structural batteries.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. 71 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2013:13
Keyword
adhesives, carbon fiber, debonding, delamination, electropolymerization, flexible battery, lithium-ion battery, paper battery
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-120199 (URN)978-91-7501-685-6 (ISBN)
Public defence
2013-04-18, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20130403

Available from: 2013-04-03 Created: 2013-04-02 Last updated: 2013-04-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Cornell, AnnLindbergh, Göran

Search in DiVA

By author/editor
Leijonmarck, SimonCornell, AnnLindbergh, Göran
By organisation
Applied Electrochemistry
In the same journal
Journal of the Electrochemical Society
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 108 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf