Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Chemical composition of cabbage (Brassica oleracea L. var. capitata) grown on acid sulfate soils
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
2010 (English)In: Journal of Plant Nutrition And Soil Science/Zeitschrift für Pflanzenernahrung und Bodenkunde, ISSN 1436-8730, E-ISSN 1522-2624, Vol. 173, no 3, 423-433 p.Article in journal (Refereed) Published
Abstract [en]

The purpose of this study was to investigate the influence of soil geochemistry on the concentrations of Ca, K, Mg, P, Co, Ni, Zn, Mn, Cu, and Fe in cabbage (Brassica oleracea L. var. capitata) grown on acid sulfate (AS) soils in Western Finland. A total of 11 topsoil (0-20 cm) and corresponding cabbage samples and three whole-soil profiles (approximate to 0-260 cm) were collected on three agricultural fields. The concentrations of Co and Zn in cabbage were correlated with the NH4Ac-extractable (easily available) concentrations in the topsoil, indicating that the uptake of these elements in cabbage is largely governed by soil geochemistry. Yet, the concentrations of Co and Zn in cabbage were not in general elevated relative to that of Finnish average values, although some AS soils showed enriched concentrations of these metals in the soil and cabbage. Significant geochemical differences (e.g., oxidation depth, organic-matter and S content, pH) were observed among the studied AS soils, while, on the other hand, the concentrations of Ca, K, Mg, P, Ni, Mn, Cu, and Fe in cabbage were relatively similar. The hydroxylamine-extractable concentrations of these elements in the topsoil were not correlated to those in cabbage, suggesting that uptake is not governed by the oxide-bound fraction of these elements in the soil. Similarly, the easily available concentrations of Ca, P, Ni, Mn, Cu, and Fe in the topsoil were not correlated to those in cabbage, indicating that uptake is independent of the easily available concentrations in the soil. Hence, it is suggested that cabbage can regulate and thus optimize its concentrations of Ca, P, Ni, Mn, Cu, and Fe. Oxidation depth affected neither the easily available concentrations of Co, Ni, Zn, and Mn in the topsoil nor the concentrations in cabbage. However, the subsoil with a lower oxidation depth, which is to a smaller extent affected by leaching, may partly be enriched in these metals. Nevertheless, these showed no increased concentrations in cabbage. Based on these findings, it is suggested that the large amounts of metals mobilized in AS soils are easily lost to drains, subsequently contaminating nearby waterways and estuaries whereas they are only partly enriched in cabbage and other previously studied crops (oat).

Place, publisher, year, edition, pages
2010. Vol. 173, no 3, 423-433 p.
Keyword [en]
leaching, metal, NH4-acetate, nutrient availability, topsoil
National Category
Botany
Identifiers
URN: urn:nbn:se:kth:diva-27239DOI: 10.1002/jpln.200900277ISI: 000279437100013Scopus ID: 2-s2.0-77953902110OAI: oai:DiVA.org:kth-27239DiVA: diva2:381871
Note
QC 20101229Available from: 2010-12-29 Created: 2010-12-09 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Jacks, Gunnar
By organisation
Land and Water Resources Engineering
In the same journal
Journal of Plant Nutrition And Soil Science/Zeitschrift für Pflanzenernahrung und Bodenkunde
Botany

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 288 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf