Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Polyester copolymer scaffolds enhance expression of bone markers in osteoblast-like cells
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
Show others and affiliations
2010 (English)In: J BIOMED MATER RES PART A, ISSN 1549-3296, Vol. 94A, no 2, 631-639 p.Article in journal (Refereed) Published
Abstract [en]

In tissue engineering, the resorbable aliphatic polyester poly(L-lactide) (PLLA) is used as scaffolds in bone regeneration. Copolymers of poly(L-lactide)-co-(epsilon-caprolactone) [poly(LLA-co-CL)] and poly(L-lactide)-co-(1,5-dioxepan-2-one) [poly(LLA-co-DXO)], with superior mechanical properties to PLLA, have been developed to be used as scaffolds, but the influence on the osteogenic potential is unclear. This in vitro study of test scaffolds of poly(LLA-co-CL) and poly(LLA-co-DXO) using PLLA scaffolds as a control demonstrates the attachment and proliferation of human osteoblast-like cells (HOB) as measured by SEM and a methylthiazol tetrazolium (MTT) colorimetric assay, and the progression of HOB osteogenesis for up to 3 weeks; expressed as synthesis of the osteoblast differentiation markers: collagen type 1 (Col 1), alkaline phosphatase, bone sialoprotein, osteocalcin (OC), osteopontin and runt related gene 2 (Runx2). Surface analysis disclosed excellent surface attachment, spread and penetration of the cells into the pores of the test scaffolds compared to the PLLA. MTT results indicated that test scaffolds enhanced the proliferation of HOBs. Cells grown on the test scaffolds demonstrated higher synthesis of Col 1 and OC and also increased bone markers mRNA expression. Compared to scaffolds of PLLA, the poly(LLA-co-CL) and poly(LLA-co-DXO) scaffolds enhanced attachment, proliferation, and expression of osteogenic markers by HOBs in vitro. Therefore, these scaffolds might be appropriate carriers for bone engineering. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 94A: 631-639, 2010

Place, publisher, year, edition, pages
2010. Vol. 94A, no 2, 631-639 p.
Keyword [en]
copolymer scaffolds, gene expression, human osteoblast-like cells, bone tissue engineering
National Category
Industrial Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-27242DOI: 10.1002/jbm.a.32726ISI: 000279482600034Scopus ID: 2-s2.0-77749343413OAI: oai:DiVA.org:kth-27242DiVA: diva2:381880
Note
QC 20101229Available from: 2010-12-29 Created: 2010-12-09 Last updated: 2010-12-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Finne-Wistrand, Anna

Search in DiVA

By author/editor
Plikk, PeterFinne-Wistrand, AnnaAlbertsson, Ann-Christine
By organisation
Fibre and Polymer Technology
Industrial Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 43 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf