Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Manufacturing resource modelling for model driven operation planning
KTH, School of Industrial Engineering and Management (ITM), Production Engineering, Computer Systems for Design and Manufacturing.ORCID iD: 0000-0002-8243-9505
KTH, School of Industrial Engineering and Management (ITM), Production Engineering, Computer Systems for Design and Manufacturing.ORCID iD: 0000-0002-0023-0282
KTH, School of Industrial Engineering and Management (ITM), Production Engineering, Machine and Process Technology.ORCID iD: 0000-0001-9185-4607
KTH, School of Industrial Engineering and Management (ITM), Production Engineering, Computer Systems for Design and Manufacturing.
Show others and affiliations
2010 (English)In: Process Machine Interactions (PMI): Vancouver, Canada, June 10-11, 2010 / [ed] Prof. Y. Altintas, University of British Columbia, 2010Conference paper, Published paper (Refereed)
Abstract [en]

Models of manufacturing resources as machine tools, fixtures and cutting tools contribute to efficient and simplified operation planning. With operation planning domain concept, defined in ontology and used during modelling of coherent ISO 10303-214 conforming data models of manufacturing resources, stable implementation solutions are ensured while capable of representing current manufacturing resources and resources developed in the future. Using similarities between different types of resources, a unified modelling approach may be applied independent of the type of object. Information classes as interfaces, kinematics, performance and behavior are identified and related to corresponding construct of the standardized product generic schema. With the common representation of shared information between applications domains as operation planning, maintenance and factory layout design, presented result contributes to set the basis for a digital factory used in virtual manufacturing to continuously improve the production system.

 

Place, publisher, year, edition, pages
2010.
Keyword [en]
Modelling, Computer Aided Process Planning (CAPP), Manufacturing resource data
National Category
Production Engineering, Human Work Science and Ergonomics Computer and Information Science
Research subject
SRA - Production
Identifiers
URN: urn:nbn:se:kth:diva-27788ISBN: 978-0-9866331-0-2 (print)OAI: oai:DiVA.org:kth-27788DiVA: diva2:382459
Conference
CIRP 2nd International Conference on Process Machine Interactions
Projects
Feature Based Operation Planning, Vinnova FFI Program (Strategic Vehicle Research and Innovation Initiative)Robust Machining, Vinnova FFI Program (Strategic Vehicle Research and Innovation Initiative)Digital factory building blocks, Vinnova FFI Program (Strategic Vehicle Research and Innovation Initiative)
Funder
XPRES - Initiative for excellence in production research
Note

QC 20110105

Available from: 2010-12-30 Created: 2010-12-30 Last updated: 2013-05-14Bibliographically approved
In thesis
1. A Computational Framework for Control of Machining System Capability: From Formulation to Implementation
Open this publication in new window or tab >>A Computational Framework for Control of Machining System Capability: From Formulation to Implementation
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Comprehensive knowledge and information about the static and dynamic behaviour of machine tools, cutting processes and their interaction is essential for machining system design, simulation, control and robust operation in safe conditions. The very complex system of a machine tool, fixture and cutting tools during the machining of a part is almost impossible to model analytically with sufficient accuracy. In combination with increasing demands for precision and efficiency in machining call for new control strategies for machining systems. These strategies need to be based on the identification of the static and dynamic stability under both the operational and off-operational conditions. To achieve this it is necessary to monitor and analyze the real system at the factory floor in full production. Design information and operational data can then be linked together to make a realistic digital model of a given machining system. Information from such a model can then be used as input in machining simulation software to find the root causes of instability.

The work presented in this thesis deals with the static and dynamic capability of machining systems. The main focus is on the operational stability of the machining system and structural behaviour of only the machine tool, as well.

When the accuracy of a machining system is measured by traditional techniques, effects from neither the static stiffness nor the cutting process are taken into account. This limits the applicability of these techniques for realistic evaluation of a machining system’s accuracy. The research presented in this thesis takes a different approach by introducing the concept of operational dynamic parameters. The concept of operational dynamic parameters entails an interaction between the structural elements of the machining systems and the process parameters. According to this concept, the absolute criterion of damping is used to evaluate the dynamic behaviour of a machining system. In contrast to the traditional theory, this methodology allows to determine the machining system's dynamic stability, in real time under operating conditions. This framework also includes an evaluation of the static deformations of a machine tool.  In this context, a novel concept of elastically linked system is introduced to account for the representation of the cutting force trough an elastic link that closes the force loop. In addition to the elastic link which behaves as a static element, a dynamic non-contact link has been introduced. The purpose is to study the non-linear effects introduced by variations of contact conditions in joints due to rotational speed.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. xv, 97 p.
Series
Trita-IIP, ISSN 1650-1888 ; 11:11
Keyword
Machining system, Stability, Statistical Dynamics, Elastic Linked System (ELS), Operational Dynamic Parameters (ODP), Loaded Double Ball Bar (LDBB), Virtual Machining System Engine (VMSE), Contactless Excitation and Response System (CERS).
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
SRA - Production
Identifiers
urn:nbn:se:kth:diva-48824 (URN)978-91-7501-162-2 (ISBN)
Public defence
2011-12-05, F3, Lindstedtsvägen 26, KTH, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
XPRES - Initiative for excellence in production research
Note
QC 20111123Available from: 2011-11-23 Created: 2011-11-23 Last updated: 2012-06-19Bibliographically approved
2. Model driven process planning for machining: Theory, application and improved information standards for efficient product realization
Open this publication in new window or tab >>Model driven process planning for machining: Theory, application and improved information standards for efficient product realization
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Model driven process planning is a methodology that emphasizes the application of models to create, represent and use information of products, processes and resources. Industry today stores information in a fragmented manner, mainly document centered with the consequence of data duplication requiring comprehensive data management and maintenance. This thesis contributes to the understanding of information representation of product and machining system specification and characteristics to support process planning and operation.

The ISO 10303 standard for industrial data has been applied as a key utility in this research, as it enables full control and understanding of information representation in diverse engineering domains. Research collaboration with participants of the International Organization for Standardization ISO has taken place, with contributions to standards development and implementation.

The basics of process planning are to achieve the unambiguous and complete information required for producing a product. The machining process plan, as a coherent model, represents relationships between manufacturing features, machined faces, tolerances and used cutting tools. It is essential for the representation of information to relate data to its valid interpretation context. Of importance is also that models and model schemas are decoupled from where, how and when the models are created, manipulated and finalized. Based on this principle, achieved coherent process plans supports efficient production engineering work processes.

Unambiguous and efficient modeling of manufacturing resources and their characteristics requires definitions of its specific domain concepts combined with generic data representation structures. This combination provides a stable and standardized data model, also capable of representing manufacturing resources developed in the future. The proposed modeling approach for manufacturing resource characterisation is valid for any product mechanism.

For implementation of the proposed increased integration, a modeling specification will be required. With the application of model driven process planning, new industrial benefits have been explored. The main principle of relating data to its valid context, applied to model driven process planning for machining, gives new possibilities for increased productivity.

Abstract [sv]

Modelldriven beredning är en metodik som framhäver användningen av modeller för att skapa, representera och använda information om produkter, processer och resurser. I industrin lagras idag information på ett fragmenterat sätt, huvudsakligen dokumentbaserat, med konsekvensen att data dupliceras vilket kräver omfattande datahantering och underhåll. Denna avhandling bidrar till förståelsen av informationsrepresentation för att specificera och karakterisera produkter och bearbetningssystem, som stöd i beredning och drift.

Standarden ISO 10303 för industriella data har använts som en viktig del i denna forskning då den möjliggör full kontroll och förståelse av informationsrepresentation inom olika ingenjörsområden. Forskningssamarbete med deltagare inom Internationella standardiseringsorganisationen ISO har ägt rum och bidragit till standardutveckling och implementering.

Målet för en beredning är att ta fram entydig och komplett information som behövs för att producera en produkt. Resultatet, bearbetningsberedningen, representerar relationerna mellan tillverkningsformelement, bearbetade ytor, toleranser och använt skärverktyg, som en koherent modell. Grundläggande för denna representation är att informationen relateras till sitt giltiga sammanhang för dess tolkning. Viktigt är också att modeller och modellscheman är frikopplade från var, hur och när modeller skapas, ändras och fulländas. Baserat på denna princip, stödjer den skapade koherenta beredningsinformationen effektiva produktionstekniska arbetsprocesser.

Entydig och effektiv modellering av tillverkningsresurser och karakteristiska egenskaper kräver definitioner av dess områdesspecifika begrepp kombinerat med generiska representationsstrukturer. Denna kombination ger en stabil och standardiserad datamodell, som också kan representera tillverkningsresurser som utvecklas i framtiden. Den föreslagna modelleringsprincipen för karakterisering av tillverkningsresurser är giltig för alla typer av produktmekanismer.

För implementering av den föreslagna ökade integreringen krävs en modelleringsspecifikation. Genom tillämpning av modelldriven beredning har nya fördelar för industrin påvisats. Huvudprincipen att relatera data till dess giltiga sammanhang ger nya möjligheter för ökad produktivitet.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. 56 p.
Series
Trita-IIP, ISSN 1650-1888 ; 13:02
Keyword
Process planning, modeling, ISO 10303, CADCAM, kinematics, Beredning, modellering, ISO 10303, CADCAM, kinematik
National Category
Mechanical Engineering
Research subject
SRA - Production
Identifiers
urn:nbn:se:kth:diva-122184 (URN)978-91-7501-766-2 (ISBN)
Public defence
2013-05-31, Brinellsalen, Brinellvägen 68, KTH, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
XPRES - Initiative for excellence in production researchVinnova
Note

QC 20130514

Available from: 2013-05-14 Created: 2013-05-14 Last updated: 2013-05-14Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Hedlind, MikaelLundgren, MagnusArchenti, Andreas

Search in DiVA

By author/editor
Hedlind, MikaelLundgren, MagnusArchenti, AndreasKjellberg, TorstenNicolescu, Cornel Mihai
By organisation
Computer Systems for Design and ManufacturingMachine and Process Technology
Production Engineering, Human Work Science and ErgonomicsComputer and Information Science

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 380 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf