Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Recursive estimation of operational dynamic parameters in milling using acoustic signal
KTH, School of Industrial Engineering and Management (ITM), Production Engineering, Machine and Process Technology.ORCID iD: 0000-0001-9185-4607
KTH, School of Industrial Engineering and Management (ITM), Production Engineering, Machine and Process Technology.
2010 (English)In: International Conference on Process Machine Interactions / [ed] Y. Altintas, Vancouver, 2010Conference paper, Published paper (Refereed)
Abstract [en]

The key concept of the identification procedure in this paper is to find a feature of the measured random response (sound pressure) that can be used to discriminate between stable and unstable process-machine interaction (PMI) in milling. The dynamic condition of the machining system is represented by the operational dynamic parameters (ODP), which refer to the contribution of the structural vibration modes and process vibration modes resulting during machining system operation. It is shown that the sound pressure level acquired by a microphone, located in the machine’s working area, is able to follow rapid changes in the process dynamics and therefore may be used as input in the recursive estimation scheme. The primary contribution of this paper lies within the formulation and implementation of recursive parametric models for the study of the real-time dynamics of a face milling operation PMI. A comparison between the experimental, simulated, and identified results is outlined.

Place, publisher, year, edition, pages
Vancouver, 2010.
Keyword [en]
Milling, stability, recursive estimation, operational dynamic parameters
National Category
Engineering and Technology
Research subject
SRA - Production
Identifiers
URN: urn:nbn:se:kth:diva-27790OAI: oai:DiVA.org:kth-27790DiVA: diva2:382505
Conference
2nd International Conference on Process Machine Interactions, 10-11 June, 2010, Vancouver BC, Canada
Projects
FFI Robust maskinbearbetning
Funder
XPRES - Initiative for excellence in production research
Note
QC 20110126Available from: 2011-01-26 Created: 2010-12-31 Last updated: 2011-11-23Bibliographically approved
In thesis
1. A Computational Framework for Control of Machining System Capability: From Formulation to Implementation
Open this publication in new window or tab >>A Computational Framework for Control of Machining System Capability: From Formulation to Implementation
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Comprehensive knowledge and information about the static and dynamic behaviour of machine tools, cutting processes and their interaction is essential for machining system design, simulation, control and robust operation in safe conditions. The very complex system of a machine tool, fixture and cutting tools during the machining of a part is almost impossible to model analytically with sufficient accuracy. In combination with increasing demands for precision and efficiency in machining call for new control strategies for machining systems. These strategies need to be based on the identification of the static and dynamic stability under both the operational and off-operational conditions. To achieve this it is necessary to monitor and analyze the real system at the factory floor in full production. Design information and operational data can then be linked together to make a realistic digital model of a given machining system. Information from such a model can then be used as input in machining simulation software to find the root causes of instability.

The work presented in this thesis deals with the static and dynamic capability of machining systems. The main focus is on the operational stability of the machining system and structural behaviour of only the machine tool, as well.

When the accuracy of a machining system is measured by traditional techniques, effects from neither the static stiffness nor the cutting process are taken into account. This limits the applicability of these techniques for realistic evaluation of a machining system’s accuracy. The research presented in this thesis takes a different approach by introducing the concept of operational dynamic parameters. The concept of operational dynamic parameters entails an interaction between the structural elements of the machining systems and the process parameters. According to this concept, the absolute criterion of damping is used to evaluate the dynamic behaviour of a machining system. In contrast to the traditional theory, this methodology allows to determine the machining system's dynamic stability, in real time under operating conditions. This framework also includes an evaluation of the static deformations of a machine tool.  In this context, a novel concept of elastically linked system is introduced to account for the representation of the cutting force trough an elastic link that closes the force loop. In addition to the elastic link which behaves as a static element, a dynamic non-contact link has been introduced. The purpose is to study the non-linear effects introduced by variations of contact conditions in joints due to rotational speed.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. xv, 97 p.
Series
Trita-IIP, ISSN 1650-1888 ; 11:11
Keyword
Machining system, Stability, Statistical Dynamics, Elastic Linked System (ELS), Operational Dynamic Parameters (ODP), Loaded Double Ball Bar (LDBB), Virtual Machining System Engine (VMSE), Contactless Excitation and Response System (CERS).
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
SRA - Production
Identifiers
urn:nbn:se:kth:diva-48824 (URN)978-91-7501-162-2 (ISBN)
Public defence
2011-12-05, F3, Lindstedtsvägen 26, KTH, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
XPRES - Initiative for excellence in production research
Note
QC 20111123Available from: 2011-11-23 Created: 2011-11-23 Last updated: 2012-06-19Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Archenti, Andreas

Search in DiVA

By author/editor
Archenti, AndreasNicolescu, Cornel Mihai
By organisation
Machine and Process Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 201 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf