Change search
ReferencesLink to record
Permanent link

Direct link
An Efficient Method for Material Characterisation of Hyperelastic Anisotropic Inhomogeneous Membranes Based on Inverse Finite-Element Analysis and an Element Partition Strategy
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
2010 (English)In: Quarterly Journal of Mechanics and Applied Mathematics, ISSN 0033-5614, E-ISSN 1464-3855, Vol. 63, no 2, 201-225 p.Article in journal (Refereed) Published
Abstract [en]

An inverse method for estimating the distributions of the nonlinear elastic properties of inhomogeneous and anisotropic membranes is investigated. The material description of the membrane is based on a versatile constitutive model, including four material parameters: two initial stiffness values pertaining to the principal directions of the material, the angle between these principal directions and a reference coordinate system and a parameter related to the level of nonlinearity of the material. The estimation procedure consists of the following three steps: (i) perform experiments on the membranous structure whose properties are to be determined, (ii) define a corresponding finite-element (FE) model and (iii) minimise an error function (with respect to the unknown parameters) that quantifies the deviation between the numerical predictions and the experimental data. For this finite deformation problem, an FE framework for membranous structures exposed to a pressure boundary loading is outlined: the principle of virtual work, its linearisation and the related spatial discretisation. To achieve a robust parameter estimation, an element partition method is employed. In numerical examples, the proposed procedure is assessed by attempting to reproduce given random reference distributions of material fields in a reference membrane. The deviations between the estimated material parameter distributions and the related reference fields are within a few percent in most cases. The standard deviation for the resulting maximum principal stress was consistently below 1%.

Place, publisher, year, edition, pages
2010. Vol. 63, no 2, 201-225 p.
National Category
URN: urn:nbn:se:kth:diva-27898DOI: 10.1093/qjmam/hbq004ISI: 000277449000004ScopusID: 2-s2.0-77952190320OAI: diva2:383110
QC 20110104Available from: 2011-01-04 Created: 2011-01-03 Last updated: 2011-01-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Kroon, Martin
By organisation
Solid Mechanics (Dept.)
In the same journal
Quarterly Journal of Mechanics and Applied Mathematics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 18 hits
ReferencesLink to record
Permanent link

Direct link