Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-pressure phase transformations in carbonates
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
2010 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 82, no 18, 184115- p.Article in journal (Refereed) Published
Abstract [en]

High-pressure phase transitions sequences in CaCO3, SrCO3, and BaCO3 are studied by first-principle electronic structure calculations. Each of the carbonates undergoes the aragonite to postaragonite phase transition with pressure in agreement with the experimental observation of Ono et al. However, the postaragonite to post-postaragonite phase transition, predicted by Oganov et al. and later observed in CaCO3, is unlikely to occur in SrCO3 and BaCO3. Hence, the concept that isostructural compounds will exhibit the same type of pressure-induced phase transitions has limitations. A change of the hybridization of the carbon atom from sp(2) to sp(3) within the Pmcn phase occurs in each of compounds, thus the carbonates are likely to transform at very high pressure to structures with tetrahedral CO4-4 carbonate group.

Place, publisher, year, edition, pages
2010. Vol. 82, no 18, 184115- p.
Keyword [en]
generalized gradient approximation, aragonite plus magnesite, augmented-wave method, earths lower mantle, crystal-structure, high-temperature, caco3, strontianite, transition, stability
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-27938DOI: 10.1103/PhysRevB.82.184115ISI: 000284462200002Scopus ID: 2-s2.0-78649692114OAI: oai:DiVA.org:kth-27938DiVA: diva2:383264
Funder
Swedish Research Council
Note
QC 20110104Available from: 2011-01-04 Created: 2011-01-03 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Ahuja, Rajeev
By organisation
Materials Science and Engineering
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 59 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf