Change search
ReferencesLink to record
Permanent link

Direct link
DT-MRI Based Computation of Collagen Fiber Deformation in Human Articular Cartilage: A Feasibility Study
Show others and affiliations
2010 (English)In: Annals of Biomedical Engineering, ISSN 0090-6964, E-ISSN 1573-9686, Vol. 38, no 7, 2447-2463 p.Article in journal (Refereed) Published
Abstract [en]

Accurate techniques for simulating the deformation of soft biological tissues are an increasingly valuable tool in many areas of biomechanical analysis and medical image computing. To model the complex morphology and response of articular cartilage, a hyperviscoelastic (dispersed) fiber-reinforced constitutive model is employed to complete two specimen-specific finite element (FE) simulations of an indentation experiment, with and without considering fiber dispersion. Ultra-high field Diffusion Tensor Magnetic Resonance Imaging (17.6 T DT-MRI) is performed on a specimen of human articular cartilage before and after indentation to similar to 20% compression. Based on this DT-MRI data, we detail a novel FE approach to determine the geometry (edge detection from first eigenvalue), the meshing (semi-automated smoothing of DTI measurement voxels), and the fiber structural input (estimated principal fiber direction and dispersion). The global and fiber fabric deformations of both the un-dispersed and dispersed fiber models provide a satisfactory match to that estimated experimentally. In both simulations, the fiber fabric in the superficial and middle zones becomes more aligned with the articular surface, although the dispersed model appears more consistent with the literature. In the future, a multi-disciplinary combination of DT-MRI and numerical simulation will allow the functional state of articular cartilage to be determined in vivo.

Place, publisher, year, edition, pages
2010. Vol. 38, no 7, 2447-2463 p.
Keyword [en]
Finite element simulation, Constitutive modeling, Hyperviscoelasticity, Magnetic resonance imaging, Diffusion tensor
National Category
Medical Laboratory and Measurements Technologies
URN: urn:nbn:se:kth:diva-27517DOI: 10.1007/s10439-010-9990-9ISI: 000278519400018ScopusID: 2-s2.0-77954656403OAI: diva2:385368
QC 20110111Available from: 2011-01-11 Created: 2010-12-13 Last updated: 2011-01-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Holzapfel, Gerhard A.
By organisation
In the same journal
Annals of Biomedical Engineering
Medical Laboratory and Measurements Technologies

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 31 hits
ReferencesLink to record
Permanent link

Direct link