Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Phase Equilibria and Thermodynamic Properties in the Fe-Cr System
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Computational Thermodynamics.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Computational Thermodynamics.ORCID iD: 0000-0001-5031-919X
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Physical Metallurgy.ORCID iD: 0000-0003-3598-2465
Show others and affiliations
2010 (English)In: Critical reviews in solid state and materials sciences, ISSN 1040-8436, E-ISSN 1547-6561, Vol. 35, no 2, 125-152 p.Article, review/survey (Refereed) Published
Abstract [en]

Phase equilibria and thermodynamic properties in the Fe-Cr system have been reviewed comprehensively based on experimental information and available computer simulations in different scales. The evaluated phase equilibria show significant differences from the currently accepted thermodynamic description by CALPHAD (calculation of phase diagram) approach. The thermodynamic properties of the Fe-Cr system, such as heat capacity, enthalpy, and activity, have been evaluated in reported experiments. The experiments on phase separation in the Fe-Cr system have also been critically reviewed with a focus on spinodal decomposition. The reported data are concentrated in the temperature range from 673 to 823 K. In addition, there is a transition region between spinodal decomposition and nucleation regimes within the composition limit from 24 to 36.3 at.% Cr and the temperature range between 700 and 830 K. In view of the importance of magnetism in the Fe-Cr system, some inadequacies of the currently used thermodynamic description are pointed out in addition to some problems with the current magnetic model. Remaining issues on the thermodynamics of the Fe-Cr system have been elaborated for future refinement of the thermodynamic description of the Fe-Cr system. According to the present review, the melting temperature of Cr is recommended to be about 2136 K, which is 44 K lower than the value adopted in the research community on thermodynamics, such as the Scientific Group Thermodata Europe.

Place, publisher, year, edition, pages
2010. Vol. 35, no 2, 125-152 p.
Keyword [en]
phase diagram, CALPHAD, ab initio, irradiation, melting temperature, spinodal decomposition
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-27514DOI: 10.1080/10408431003788472ISI: 000278705100003Scopus ID: 2-s2.0-77953569969OAI: oai:DiVA.org:kth-27514DiVA: diva2:385753
Note
QC 20110112Available from: 2011-01-12 Created: 2010-12-13 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Thermodynamic and Kinetic Investigation of the Fe-Cr-Ni System Driven by Engineering Applications
Open this publication in new window or tab >>Thermodynamic and Kinetic Investigation of the Fe-Cr-Ni System Driven by Engineering Applications
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This work is a thermodynamic and kinetic study of the Fe-Cr-Ni system as the core of stainless steels. The Fe-Cr, Fe-Ni and Cr-Ni systems were studied intensively using both computational and experimental techniques, including CALPHAD (CALculation of PHAse Diagrams), phase field simulation, ab initio modeling, calorimetry, and atom probe tomography. The purpose of this thesis is to reveal the complexity of the phase transformations in the Fe-Cr-Ni system via the integrated techniques. Due to the importance of the binary Fe-Cr system, it was fully reassessed using the CALPHAD technique by incorporating an updated description of the lattice stability for Fe down to zero kelvin. The improved thermodynamic description was later adopted in a phase field simulation for studying the spinodal decomposition in a series of Fe-Cr binary alloys. Using atom probe tomography and phase field simulation, a new approach to analyze the composition amplitude of the spinodal decomposition was proposed by constructing an amplitude density spectrum. The magnetic phase diagram of the Fe-Ni system was reconstructed according to the results from both ab initio calculations and reported experiments. Based on the Inden-Hillert-Jarl magnetic model, the thermodynamic reassessment of the Fe-Ni system demonstrated the importance of magnetism in thermodynamic and kinetic investigations. Following this, the current magnetic model adopted in the CALPHAD community was further improved. Case studies were performed showing the advantages of the improved magnetic model. Additionally, the phase equilibria of the Fe-Cr-Ni ternary were discussed briefly showing the need of thermodynamic and kinetic studies at low temperatures. The “low temperature CALPHAD” concept was proposed and elucidated in this work showing the importance of low temperature thermodynamics and kinetics for designing the new generation of stainless steels.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2012. v, 63 p.
Keyword
phase transformation, magnetism, spinodal decomposition, stainless steel, low temperature CALPHAD, phase field, ab initio, atom probe tomography, calorimetry
National Category
Metallurgy and Metallic Materials
Research subject
SRA - E-Science (SeRC); SRA - Energy
Identifiers
urn:nbn:se:kth:diva-96707 (URN)978-91-7501-394-7 (ISBN)
Public defence
2012-08-28, sal B2, Brinellvägen 23, MSE, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Projects
Hero-m
Funder
StandUpSwedish e‐Science Research Center
Note

QC 20120612

Available from: 2012-06-12 Created: 2012-06-10 Last updated: 2013-04-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Selleby, MalinOdqvist, Joakim

Search in DiVA

By author/editor
Xiong, WeiSelleby, MalinOdqvist, Joakim
By organisation
Computational ThermodynamicsPhysical Metallurgy
In the same journal
Critical reviews in solid state and materials sciences
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 226 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf