Change search
ReferencesLink to record
Permanent link

Direct link
Investigation of Iodine Concentration Effects in Electrolytes for Dye-Sensitized Solar Cells
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry (closed 20110630).
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry (closed 20110630).
Show others and affiliations
2010 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 114, no 23, 10612-10620 p.Article in journal (Refereed) Published
Abstract [en]

The present work describes the effects of different iodine concentrations and iodine-to-iodide ratios in electrolytes for dye-sensitized solar cells based on low-viscous, binary ionic liquid and organic liquid solvents. Current-voltage characteristics, photoelectrochemical measurements, electrochemical impedance spectroscopy, and Raman spectroscopy were used for characterization. Optimal short-circuit current and overall conversion efficiency were achieved using intermediate and low iodine concentration in ionic liquid-based and acetonitrile-based electrolytes, respectively. Results from photoelectrochemical and Raman-spectroscopic measurements reveal that both triiodide mobility and chemical availability affect the optimal iodine concentration required in these two types of electrolytes. The higher iodine concentrations required for the ionic liquid-based electrolytes partly compensate for these effects, although negative effects from higher recombination losses and light absorption of iodine-containing species start to become significant.

Place, publisher, year, edition, pages
2010. Vol. 114, no 23, 10612-10620 p.
Keyword [en]
Chemical availability, Dye-Sensitized solar cell, Iodine concentration, Organic liquid, Overall conversion efficiency, Photoelectrochemical measurements, Photoelectrochemicals, Recombination loss, Spectroscopic measurements, Triiodide, Acetonitrile, Concentration (process), Conversion efficiency, Current voltage characteristics, Electrochemical corrosion, Electrochemical impedance spectroscopy, Electrolytes, Fused silica, Industrial chemicals, Iodine, Ionic liquids, Ions, Optimization, Photoelectrochemical cells, Raman spectroscopy, Solar cells, Switching circuits
National Category
Chemical Sciences
URN: urn:nbn:se:kth:diva-27506DOI: 10.1021/jp1001918ISI: 000278479700040ScopusID: 2-s2.0-77953510497OAI: diva2:386092

QC 20110112

Available from: 2011-01-12 Created: 2010-12-13 Last updated: 2016-05-02Bibliographically approved
In thesis
1. Liquid Redox Electrolytes for Dye-Sensitized Solar Cells
Open this publication in new window or tab >>Liquid Redox Electrolytes for Dye-Sensitized Solar Cells
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis focuses on liquid redox electrolytes in dye-sensitized solar cells (DSCs). A liquid redox electrolyte, as one of the key constituents in DSCs, typically consists of a redox mediator, additives and a solvent. This thesis work concerns all these three aspects of liquid electrolytes, aiming through fundamental insights to enhance the photovoltaic performances of liquid DSCs.

Initial attention has been paid to the iodine concentration effects in ionic liquid (IL)-based electrolytes. It has been revealed that the higher iodine concentration required in IL-based electrolytes can be attributed to both triiodide mobility associated with the high viscosity of the IL, and chemical availability of triiodide. The concept of incompletely solvated ionic liquids (ISILs) has been introduced as a new type of electrolyte solvent for DSCs. It has been found that the photovoltaic performance of ISIL-based electrolytes can even rival that of organic solvent-based electrolytes. And most strikingly, ISIL-based electrolytes provide highly stable DSC devices under light-soaking conditions, as a result of the substantially lower vapor pressure of the ISIL system. A significant synergistic effect has been observed when both guanidinium thiocyanate and N-methylbenzimidazole are employed together in an IL-based electrolyte, exhibiting an optimal overall conversion efficiency.

Tetrathiafulvalene (TTF) has been investigated as an organic iodine-free redox couple in electrolytes for DSCs. An unexpected worse performance has been observed for the TTF system, albeit it possesses a particularly attractive positive redox potential. An organic, iodine-free thiolate/disulfide system has also been adopted as a redox couple in electrolytes for organic DSCs. An impressive efficiency of 6.0% has successfully been achieved by using this thiolate/disulfide redox couple in combination with a poly (3, 4-ethylenedioxythiophene) (PEDOT) counter electrode material under full sunlight illumination (AM 1.5G, 100 mW/cm2). Such high efficiency can even rival that of its counterpart DSC using a state-of-the-art iodine-based electrolyte in the systems studied.The cation effects of lithium, sodium and guanidinium ions in liquid electrolytes for DSCs have been scrutinized. The selection of the type of cations has been found to exert quite different impacts on the conduction band edge (CB) of the TiO2 and also on the electron recombination kinetics, therefore resulting in different photovoltaic behavior.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2012. 60 p.
Trita-CHE-Report, ISSN 1654-1081 ; 2012:2
dye-sensitized solar cells, electrolytes, ionic liquids, redox couples, additives
National Category
Inorganic Chemistry
urn:nbn:se:kth:diva-64139 (URN)978-91-7501-231-5 (ISBN)
Public defence
2012-02-16, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (Finnish)
QC 20120124Available from: 2012-01-24 Created: 2012-01-24 Last updated: 2012-01-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Yu, ZeGorlov, MikhailNissfolk, JarlKloo, Lars
By organisation
Inorganic Chemistry (closed 20110630)Organic Chemistry
In the same journal
The Journal of Physical Chemistry C
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 79 hits
ReferencesLink to record
Permanent link

Direct link