Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Highly Transparent Films from Carboxymethylated Microfibrillated Cellulose: The Effect of Multiple Homogenization Steps on Key Properties
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
Show others and affiliations
2011 (English)In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 119, no 5, 2652-2660 p.Article in journal (Refereed) Published
Abstract [en]

We produced microfibrillated cellulose by passing carboxymethylated sulfite-softwood-dissolving pulp with a relatively low hemicellulose content (4.5%) through a high-shear homogenizer. The resulting gel was subjected to as many as three additional homogenization steps and then used to prepare solvent-cast films. The optical, mechanical, and oxygen-barrier properties of these films were determined. A reduction in the quantity and appearance of large fiber fragments and fiber aggregates in the films as a function of increasing homogenization was illustrated with optical microscopy, atomic force microscopy, and scanning electron microscopy. Film opacity decreased with increasing homogenization, and the use of three additional homogenization steps after initial gel production resulted in highly transparent films. The oxygen permeability of the films was not significantly influenced by the degree of homogenization, whereas the mean tensile strength, modulus of elasticity, and strain at break were increased by two or three extra homogenization steps.

Place, publisher, year, edition, pages
Wiley-Blackwell, 2011. Vol. 119, no 5, 2652-2660 p.
Keyword [en]
barrier, biopolymers, fibers, gas permeation, mechanical properties
National Category
Polymer Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-28589DOI: 10.1002/app.32831ISI: 000285310400021Scopus ID: 2-s2.0-78649949931OAI: oai:DiVA.org:kth-28589DiVA: diva2:388212
Note

QC 20110117

Available from: 2011-01-17 Created: 2011-01-17 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Microfibrillated cellulose: Energy-efficient preparation techniques and key properties
Open this publication in new window or tab >>Microfibrillated cellulose: Energy-efficient preparation techniques and key properties
2012 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This work describes three alternative processes for producing microfibrillated cellulose (MFC) in which pulp fibres are first pre-treated and then homogenized using a high-pressure homogenizer. In one process, fibre cell wall delamination was facilitated with a combined enzymatic and mechanical pre-treatment. In the two other processes, cell wall delamination was facilitated by pre-treatments that introduced anionically charged groups into the fibre wall, by means of either a carboxymethylation reaction or irreversibly attaching carboxymethyl cellulose (CMC) onto the fibres. All three processes are industrially feasible and enable production with low energy consumption. Using these methods, MFC can be produced with an energy consumption of 500–2300 kWh/tonne, which corresponds to a 91–98% reduction in energy consumption from that presented in earlier studies. These materials have been characterized in various ways and it has been demonstrated that the produced MFCs are approximately 5–30 nm wide and up to several microns long.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2012. 49 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 38
Keyword
Microfibrillated cellulose, microfibrillar cellulose, nanofibrillated cellulose nanofibrillar cellulose, nanocellulose, MFC, NFC, production techniques, energy efficient, gel properties, films, enzymes, carboxymethylation, carboxymethyl cellulose, CMC, mechanical properties, oxygen barrier, homogenization
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-102949 (URN)978-91-7501-464-7 (ISBN)
Presentation
2012-10-17, STFI-salen, Innventia AB, Drottning Kristinas väg 61, KTH, Stockholm, 14:02 (Swedish)
Opponent
Supervisors
Note

QC 20120928

Available from: 2012-09-28 Created: 2012-09-28 Last updated: 2012-10-03Bibliographically approved
2. Microfibrillated cellulose: Energy-efficient preparation techniques and applications in paper
Open this publication in new window or tab >>Microfibrillated cellulose: Energy-efficient preparation techniques and applications in paper
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This work describes three alternative processes for producing microfibrillated cellulose (MFC; also referred to as cellulose nanofibrils, CNF) in which bleached pulp fibres are first pretreated and then homogenized using a high-pressure homogenizer. In one process, fibre cell wall delamination was facilitated by a combined enzymatic and mechanical pretreatment. In the two other processes, cell wall delamination was facilitated by pretreatments that introduced anionically charged groups into the fibre wall, by means of either a carboxymethylation reaction or irreversibly attaching carboxymethylcellulose (CMC) to the fibres. All three processes are industrially feasible and enable energy-efficient production of MFC. Using these processes, MFC can be produced with an energy consumption of 500–2300 kWh/tonne. These materials have been characterized in various ways and it has been demonstrated that the produced MFCs are approximately 5–30 nm wide and up to several microns long.

The MFCs were also evaluated in a number of applications in paper. The carboxymethylated MFC was used to prepare strong free-standing barrier films and to coat wood-containing papers to improve the surface strength and reduce the linting propensity of the papers. MFC, produced with an enzymatic pretreatment, was also produced at pilot scale and was studied in a pilot-scale paper making trial as a strength agent added at the wet-end for highly filled papers.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. 63 p.
Series
TRITA-CHE-Report, ISSN 1654-1081 ; 2015:5
Keyword
Microfibrillated cellulose, microfibrillar cellulose, nanofibrillated cellulose, nanofibrillar cellulose, cellulose nanofibrils, nanocellulose, MFC, NFC, CNF, production techniques, energy efficient, gel properties, films, enzymes, carboxymethylation, carboxymethyl cellulose, CMC, mechanical properties, oxygen barrier, homogenization, linting, papermaking
National Category
Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-159222 (URN)978-91-7595-426-4 (ISBN)
Public defence
2015-02-27, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20150126

Available from: 2015-01-26 Created: 2015-01-26 Last updated: 2015-01-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hedenqvist, MikaelAnkerfors, Mikael
By organisation
Fibre and Polymer TechnologyFibre Technology
In the same journal
Journal of Applied Polymer Science
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 319 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf