Change search
ReferencesLink to record
Permanent link

Direct link
Show others and affiliations
2010 (English)In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 713, no 1, 154-165 p.Article in journal (Refereed) Published
Abstract [en]

We report on analysis of timing and spectroscopy of the Vela pulsar using 11 months of observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. The intrinsic brightness of Vela at GeV energies combined with the angular resolution and sensitivity of the LAT allows us to make the most detailed study to date of the energy-dependent light curves and phase-resolved spectra, using a LAT-derived timing model. The light curve consists of two peaks (P1 and P2) connected by bridge emission containing a third peak (P3). We have confirmed the strong decrease of the P1/P2 ratio with increasing energy seen with EGRET and previous Fermi LAT data, and observe that P1 disappears above 20 GeV. The increase with energy of the mean phase of the P3 component can be followed with much greater detail, showing that P3 and P2 are present up to the highest energies of pulsation. We find significant pulsed emission at phases outside the main profile, indicating that magnetospheric emission exists over 80% of the pulsar period. With increased high-energy counts the phase-averaged spectrum is seen to depart from a power law with simple exponential cutoff, and is better fit with a more gradual cutoff. The spectra in fixed-count phase bins are well fit with power laws with exponential cutoffs, revealing a strong and complex phase dependence of the cutoff energy, especially in the peaks. By combining these results with predictions of the outer magnetosphere models that map emission characteristics to phase, it will be possible to probe the particle acceleration and the structure of the pulsar magnetosphere with unprecedented detail.

Place, publisher, year, edition, pages
2010. Vol. 713, no 1, 154-165 p.
Keyword [en]
pulsars: general, stars: neutron
National Category
Astronomy, Astrophysics and Cosmology
URN: urn:nbn:se:kth:diva-28417DOI: 10.1088/0004-637X/713/1/154ISI: 000275918500014ScopusID: 2-s2.0-77950255204OAI: diva2:389351
Knut and Alice Wallenberg FoundationSwedish Research Council
QC 20110119Available from: 2011-01-19 Created: 2011-01-14 Last updated: 2012-03-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Jackson, Miranda S.McGlynn, SineadRyde, FelixYlinen, Tomi
By organisation
PhysicsParticle and Astroparticle Physics
In the same journal
Astrophysical Journal
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 59 hits
ReferencesLink to record
Permanent link

Direct link