Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling the Structure and Absorption Spectra of Stilbazolium Merocyanine in Polar and Nonpolar Solvents Using Hybrid QM/MM Techniques
KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).ORCID iD: 0000-0003-0185-5724
KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).ORCID iD: 0000-0003-2729-0290
KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
Show others and affiliations
2010 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 114, no 42, 13349-13357 p.Article in journal (Refereed) Published
Abstract [en]

We have performed Car-Parrinello mixed quantum mechanics/molecular mechanics (CP-QM/MM) calculations for stilbazolium merocyanine (SM) in polar and nonpolar solvents in order to explore the role of solute molecular geometry, solvation shell structure, and different interaction mechanisms on the absorption spectra and its dependence on solvent polarity. On the basis of the average bond length values and group charge distributions, we find that the SM molecule remains in a neutral quinonoid form in chloroform (a nonpolar solvent) while it transforms to a charge-separated benzenoid form in water (a polar solvent). Based on a quantum mechanical/molecular mechanical response technique, with different MM descriptions for the water environment, absorption spectra were obtained as averages over configurations derived from the CP-QM/MM simulations. We show that for SM in water the solute polarization plays a major role in predictions of the lambda(max) and solvatochromic shift and that once this effect is included the contributions from solvent polarization and intermolecular charge transfer become less important. For SM in chloroform and water solvents, we have also performed absorption spectra calculations using a polarizable continuum model in order to address its relative performance compared to the QM/MM response technique. In the case of SM in water, our study supports the notion that, in order to predict accurate absorption spectra and solvatochromic shifts, it is important to use a discrete description of the solvent when it, as in water, is involved in site-specific interaction with the solute molecule. The technique is thus shown to outperform the more conventional polarizable continuum model in predicting the solvatochromic shift.

Place, publisher, year, edition, pages
2010. Vol. 114, no 42, 13349-13357 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-26258DOI: 10.1021/jp1060717ISI: 000283110500011Scopus ID: 2-s2.0-77958450840OAI: oai:DiVA.org:kth-26258DiVA: diva2:392544
Note

QC 20110127

Available from: 2011-01-27 Created: 2010-11-21 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Natarajan Arul, MuruganAgren, Hans

Search in DiVA

By author/editor
Natarajan Arul, MuruganRinkevicius, ZilvinasAidas, KestutisAgren, Hans
By organisation
Theoretical Chemistry (closed 20110512)
In the same journal
Journal of Physical Chemistry B
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf