Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Synthesis of nanostructured BSCF by oxalate co-precipitation - As potential cathode material for solid oxide fuels cells
KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.ORCID iD: 0000-0001-5678-5298
KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
2010 (English)In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 35, no 17, 9448-9454 p.Article in journal (Refereed) Published
Abstract [en]

BaxSr1-xCoyFe1-yO3 (BSCF) cathode material for solid oxide fuel cells (SOFC) was synthesized in nanocrystalline form by a novel chemical alloying approach. Thermodynamic modeling has been performed using Medusa software for obtaining the optimum conditions for the fabrication of a precursor with the desired composition. Precursor powder was then calcined and annealed to produce the final mixed oxide BSCF composition. The thermal properties, phase constituents, microstructure and elemental analysis of the samples were characterized by TGA, XRD, SEM and EDS techniques respectively. Spark Plasma Sintering (SPS) has been used at 1080 degrees C and under 50 MPa pressure to obtain the pellets of BSCF with preserved nanostructure and rather high compaction density for electrical conductivity measurements. The results show that the powders have cubic perovskite-type structure with a high homogeneity. Finer resultant powder, compared to earlier reports, and SPS sintered BSCF with nanosized grains exhibited a significantly higher electrical conductivity up to 900 degrees C. Specific conductivity values have been measured in air and N-2 and the maximum of 63 5 cm(-1) at 430 degrees C in air and 25 S cm(-1) at 375 degrees C in N-2 correspondingly show twice as much as conventional BSCF implying a high pledge for nano-BSCF as cathode material in intermediate-temperature SOFC. This is due to the lower interfacial resistance of preserved nanograins by the use of SPS sintering. Presented co-precipitation method is easy to handle and has a high promise to synthesize BSCF at large-scale for IT-SOFCs.

Place, publisher, year, edition, pages
2010. Vol. 35, no 17, 9448-9454 p.
Keyword [en]
Solid oxide fuel cell, Nanostructure, BSCF, Co-precipitation, Nanocrystalline perovskites
National Category
Other Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-29216DOI: 10.1016/j.ijhydene.2010.03.121ISI: 000282241900070Scopus ID: 2-s2.0-77956382381OAI: oai:DiVA.org:kth-29216DiVA: diva2:393384
Note
QC 20110131Available from: 2011-01-31 Created: 2011-01-27 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Toprak, Muhammet S.

Search in DiVA

By author/editor
Toprak, Muhammet S.Darab, MahdiMuhammed, Mamoun
By organisation
Functional Materials, FNM
In the same journal
International journal of hydrogen energy
Other Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 201 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf