Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of Steam Treatment on the Properties of Wood Cell Walls
KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0001-5818-2378
KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
2011 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 12, no 1, 194-202 p.Article in journal (Refereed) Published
Abstract [en]

Steam treatment is a hygrothermal method of potential industrial significance for improving the dimensional stability and durability of wood materials. The steaming results in different chemical and micromechanical changes in the nanostructured biocomposite that comprise a wood cell wall. In this study, spruce wood (Picea abies Karst.) that had been subjected to high-temperature steaming up to 180 degrees C was examined, using imaging Fourier Transform Infrared (FT-IR) microscopy and nanoindentation to track changes in the chemical structure and the micromechanical properties of the secondary cell wall. Similar changes in the chemical components, due to the steam treatment, were found in earlywood and latewood. A progressive degradation of the carbonyl groups in the glucuronic acid unit of xylan and a loss of mannose units in the glucomannan backbone, that is, a degradation of glucomannan, together with a loss of the C=O group linked to the aromatic skeleton in lignin, was found. The development of the hygroscopic and micromechanical properties that occurred with an elevation in the steam temperature correlated well with this pattern of degradation in the constituents in the biocomposite matrix in the cell wall (hemicellulose and lignin).

Place, publisher, year, edition, pages
2011. Vol. 12, no 1, 194-202 p.
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-30564DOI: 10.1021/bm101144mISI: 000285956700026Scopus ID: 2-s2.0-78651278962OAI: oai:DiVA.org:kth-30564DiVA: diva2:401059
Note
QC 20110301Available from: 2011-03-01 Created: 2011-02-28 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Berglund, Lars

Search in DiVA

By author/editor
Yin, YafangBerglund, LarsSalmen, Lennart
By organisation
Wallenberg Wood Science CenterBiocomposites
In the same journal
Biomacromolecules
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 78 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf