Change search
ReferencesLink to record
Permanent link

Direct link
Experimental investigation of an evaporator enhanced with a micro-porous structure in a two-phase thermosyphon loop
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.ORCID iD: 0000-0002-9902-2087
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
Show others and affiliations
2009 (English)In: HT2008: PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE - 2008, VOL 2, NEW YORK: AMER SOC MECHANICAL ENGINEERS , 2009, 327-334 p.Conference paper (Refereed)
Abstract [en]

Following is an experimental study of six different evaporators in a closed two-phase thermosyphon loop system, where the influence of various evaporator dimensions and surfaces was investigated. The evaporators featured a 30 mm long rectangular channel with hydraulic diameters ranging from 1.2-2.7 mm. The heat transfer surface of one of the tested evaporators was enhanced with copper nano-particles, dendritically connected into an ordered micro-porous three dimensional network structure. To facilitate high speed video visualization of the two-phase flow in the evaporator channel, a transparent polycarbonate window was attached to the front of the evaporators. Refrigerant 134A was used as a working fluid and the tests were conducted at 6.5 bar. The tests showed that increasing channel diameters generally performed better. The three largest evaporator channels exhibited comparable performance, with a maximum heat transfer coefficient of about 2.2 W/(cm(2)K) at a heat flux of 30-35 W/cm(2) and a critical heat flux of around 50 W/cm(2). Isolated bubbles characterized the flow regime at peak performance for the large diameter channels, while confined bubbles and chaotic churn flow typified the evaporators with small diameters. In line with previous pool boiling experiments, the nucleate boiling mechanism was significantly enhanced, tip to 4 times, by the nano- and micro-porous enhancement structure.

Place, publisher, year, edition, pages
Keyword [en]
Thermosyphon, electronics cooling, enhanced boiling, nano- and micro-structures, porous networks, two-phase heat transfer, micro-channels, R134A, high speed visualization
National Category
Engineering and Technology
URN: urn:nbn:se:kth:diva-30867DOI: 10.1115/HT2008-56471ISI: 000265637100037ScopusID: 2-s2.0-70349160840ISBN: 978-0-7918-4848-7OAI: diva2:401983
ASME Heat Transfer Summer Conference Jacksonville, FL, AUG 10-14, 2008
QC 20110304Available from: 2011-03-04 Created: 2011-03-04 Last updated: 2012-03-21Bibliographically approved
In thesis
1. Enhanced Boiling Heat Transfer on a Dendritic and Micro-Porous Copper Structure
Open this publication in new window or tab >>Enhanced Boiling Heat Transfer on a Dendritic and Micro-Porous Copper Structure
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

A novel surface structure comprising dendritically ordered nano-particles of copper was developed during the duration of this thesis research project. A high current density electrodeposition process, where hydrogen bubbles functioned as a dynamic mask for the materials deposition, was used as a basic fabrication method. A post processing annealing treatment was further developed to stabilize and enhance the mechanical stability of the structure.

The structure was studied quite extensively in various pool boiling experiments in refrigerants; R134a and FC-72. Different parameters were investigated, such as; thickness of the porous layer, presence of vapor escape channels, annealed or non-annealed structure. Some of the tests were filmed with a high speed camera, from which visual observation were made as well as quantitative bubble data extracted. The overall heat transfer coefficient in R134a was enhanced by about an order of magnitude compared to a plain reference surface and bubble image data suggests that both single- and two-phase heat transfer mechanisms were important to the enhancement.

A quantitative and semi-empirical boiling model was presented where the main two-phase heat transfer mechanism inside the porous structure was assumed to be; micro-layer evaporation formed by an oscillating vapor-liquid meniscus front with low resistance vapor transport through escape channels. Laminar liquid motion induced by the oscillating vapor front was suggested as the primary single-phase heat transfer mechanism.

The structure was applied to a standard plate heat exchanger evaporator with varying hydraulic diameter in the refrigerant channel. Again, a 10 times improved heat transfer coefficient in the refrigerant channel was recorded, resulting in an improvement of the overall heat transfer coefficient with over 100%. A superposition model was used to evaluate the results and it was found that for the enhanced boiling structure, variations of the hydraulic diameter caused a change in the nucleate boiling mechanism, which accounted for the largest effect on the heat transfer performance. For the standard heat exchanger, it was mostly the convective boiling mechanism that was affected by the change in hydraulic diameter.

The structure was also applied to the evaporator surface in a two-phase thermosyphon with R134a as working fluid. The nucleate boiling mechanism was found to be enhanced with about 4 times and high speed videos of the enhanced evaporator reveal an isolated bubble flow regime, similar to that of smooth channels with larger hydraulic diameters. The number and frequency of the produced bubbles were significantly higher for the enhanced surface compared to that of the plain evaporator. This enhanced turbulence and continuous boiling on the porous structure resulted in decreased oscillations in the thermosyphon for the entire range of heat fluxes.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. 75 p.
Trita-REFR, ISSN 1102-0245 ; 11:02
enhanced boiling; R134a; FC-72; flow boiling; heat transfer; high speed visualization; instability; micro-channels; micro-structured; nano- and micro-technology; nano- and micro-porous structured surfaces; plate heat exchanger; pool boiling; porous media; thermosyphon; two-phase heat transfer
National Category
Energy Engineering
Research subject
SRA - Energy
urn:nbn:se:kth:diva-47538 (URN)978-91-7501-163-9 (ISBN)
Public defence
2011-11-25, E1, Lindstedtsvägen 3, KTH, Stockholm, 10:00 (English)
QC 20111111Available from: 2011-11-11 Created: 2011-11-10 Last updated: 2011-11-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Furberg, RichardKhodabandeh, RahmatollahPalm, Björn E.Li, ShanghuaToprak, MuhammetMuhammed, Mamoun
By organisation
Applied Thermodynamics and Refrigeration
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 115 hits
ReferencesLink to record
Permanent link

Direct link