Change search
ReferencesLink to record
Permanent link

Direct link
A pin-on-disc investigation of nanoporous composite-based and conventional brake padmaterials focusing on airborne wear particles
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.ORCID iD: 0000-0003-0696-7506
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Services Engineering.
Show others and affiliations
2011 (English)In: Tribology International, ISSN 0301-679XArticle in journal (Other academic) Submitted
Place, publisher, year, edition, pages
Keyword [en]
airborne wear particles, disc brakes, pin-on-disc
National Category
Mechanical Engineering Materials Engineering
URN: urn:nbn:se:kth:diva-31148OAI: diva2:402897
QS 20120319Available from: 2011-03-10 Created: 2011-03-10 Last updated: 2012-03-19Bibliographically approved
In thesis
1. A study of airborne wear particles from automotive disc brakes
Open this publication in new window or tab >>A study of airborne wear particles from automotive disc brakes
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

During braking, both the disc and pads in disc brakes are worn. Since disc brakes are not sealed,some of the wear particles generated can become airborne. Several studies have found anassociation between adverse health effects and the concentration of particles in the atmosphere,so it is of interest to improve our knowledge of the airborne wear particles generated by discbrakes.

This thesis deals with experimental and computational methods focusing on airborne wearparticles from disc brakes. The eight appended papers discuss the possibility to both measure andnumerically determine the concentration and size distribution of airborne wear particles thatoriginate from the pad-to-disc contact. The objective is to increase the scientific knowledge ofairborne wear particles generated from disc brakes.

Papers A, B and C describe tests of disc brake materials conducted in a modified pin-on-discmachine. The results show that the test set-up can be used to measure and rank disc brakematerials with respect to the concentration of airborne particles generated. Ultrafine (nanosized),fine and coarse airborne wear particles that contain metals such as iron, copper and tin werefound.

Papers D and E describe a novel disc brake assembly test stand and tests of disc brake materialsconducted in it. The results show that the test set-up can be used to measure the concentrationand size distribution of airborne wear particles generated from disc brake materials. The resultsalso indicate an ability to rank different pad/disc combinations with respect to the concentrationof airborne wear particles. Furthermore, the results suggest that this test stand can be used tostudy rust layer removal from the disc and that airborne particles are generated even at low brakepressures, such as used to remove dirt from the disc.

Paper F compares measurements made in passenger car field tests with measurements made in adisc brake assembly test stand and in a pin-on-disc machine. A promising correlation between thethree different test methods is found.

Paper G presents and discusses a simulation methodology that numerically determines theconcentration and size distribution of airborne wear particles generated from the pad-to-disccontact in disc brakes by using general-purpose finite element software.

Paper H discusses a cellular automaton model that describes the microscopic contact situationbetween the pad and disc in disc brakes. This model is used to numerically determine the amountof wear that leaves the contact. The results correlate qualitatively with experimental observationsfound in the literature.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. 20 p.
Trita-MMK, ISSN 1400-1179 ; 2011:04
Disc brakes, Airborne wear particles, Nanoparticles, Cellular automaton
urn:nbn:se:kth:diva-31152 (URN)978-91-7415-871-7 (ISBN)
Public defence
2011-05-27, F3 (Flodissalen), Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
QC 20110317Available from: 2011-03-17 Created: 2011-03-10 Last updated: 2011-05-24Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Wahlström, JensOlander, LarsOlofsson, Ulf
By organisation
Machine ElementsBuilding Services EngineeringTribologi
In the same journal
Tribology International
Mechanical EngineeringMaterials Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 64 hits
ReferencesLink to record
Permanent link

Direct link