Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Water Interaction with native defects on rutile TiO2 nanowire: Ab initio calculations
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
2011 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 98, no 8, 083115- p.Article in journal (Refereed) Published
Abstract [en]

Adsorption of water molecules on stoichiometric and defective surfaces of rutile TiO2 nanowire oriented along the [(1) over bar 10] direction is investigated using density function theory calculations. We have investigated, in particular, O and Ti vacancies where energetic, structural, and electronic properties were evaluated. It was found that the water molecules interacting with O-vacancy undergo spontaneous dissociation, forming hydroxyl groups bound to Ti atoms and other OH groups formed by surface O and H-water. The same is not found in the case of perfect and Ti-vacancy containing nanowire. This dissociation of water molecules is due to charge transfer from neighboring Ti atom, which is polarized due to the O-vacancy.

Place, publisher, year, edition, pages
2011. Vol. 98, no 8, 083115- p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-31380DOI: 10.1063/1.3556276ISI: 000287764300079Scopus ID: 2-s2.0-79952089272OAI: oai:DiVA.org:kth-31380DiVA: diva2:403828
Note
QC 20110315Available from: 2011-03-15 Created: 2011-03-14 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Araujo, Carlos MoysesAhuja, Rajeev
By organisation
Applied Material Physics
In the same journal
Applied Physics Letters
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 19 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf