Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A photo-induced electron transfer study of an organic dye anchored on the surfaces of TiO2 nanotubes and nanoparticles
Show others and affiliations
2011 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 13, no 9, 4032-4044 p.Article in journal (Refereed) Published
Abstract [en]

We report on femtosecond-nanosecond (fs-ns) studies of the triphenylamine organic dye (TPC1) interacting with titania nanoparticles of different sizes, nanotubes and nanorods. We used time-resolved emission and absorption spectroscopy to measure the photoinduced dynamics of forward and back electron transfer processes taking place in TPC1-titania complexes in acetonitrile (ACN) and dichloromethane (DCM) solutions. We observed that the electron injection from the dye to titania occurs in a multi-exponential way with the main contribution of 100 fs from the hot excited charge-transfer state of anchored TPC1. This process competes with the relaxation of the excited state, mainly governed by solvation, that takes place with average time constants of 400 fs in ACN and 1.3 ps in DCM solutions. A minor contribution to the electron injection process takes place with longer time constants of about 1-10 ps from the relaxed excited state of TPC1. The latter times and their contribution do not depend on the size of the nanoparticles, but are substantially smaller in the case of nanotubes (1-3 ps), probably due to the caging effect. The contribution is also smaller in DCM than in ACN. The efficient back recombination takes place also in a multi-exponential way with times of 1 ps, 15 ps and 1 ns, and only 20-30% of the initial injected electrons in the conduction band are left within the first 1 ns after excitation. The faster recombination rates are suggested due to those originating from the free electrons in the conduction band of titania or the electrons in the shallow trap states, while the slower recombination is due to the electrons in the deep trap states. The results reported here should be relevant to a better understanding of the photobehaviour of an organic dye with promising potential for use in solar cells. They should also help to determine the important factors that limit the efficiency of solar cells based on the triphenylamine-based dyes for solar energy conversion.

Place, publisher, year, edition, pages
2011. Vol. 13, no 9, 4032-4044 p.
Keyword [en]
SENSITIZED SOLAR-CELLS, TRANSIENT ABSORPTION-SPECTROSCOPY, NANOCRYSTALLINE THIN-FILMS, EXCITED-STATE DYNAMICS, RECOMBINATION DYNAMICS, FEMTOSECOND DYNAMICS, PROTON-TRANSFER, VISIBLE ABSORPTION, SOLVATION DYNAMICS, INJECTION DYNAMICS
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-31313DOI: 10.1039/c0cp01898hISI: 000287411700054Scopus ID: 2-s2.0-79952415524OAI: oai:DiVA.org:kth-31313DiVA: diva2:404823
Funder
EU, FP7, Seventh Framework Programme, 235286 (NANOSOL)
Note
QC 20110318Available from: 2011-03-18 Created: 2011-03-14 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Sun, Licheng

Search in DiVA

By author/editor
Sun, Licheng
By organisation
Organic Chemistry
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf