Change search
ReferencesLink to record
Permanent link

Direct link
Synthesis and characterization of poly(vinyl phosphonic acid) (PVPA)-Fe3O4 nanocomposite
KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.ORCID iD: 0000-0001-5678-5298
Show others and affiliations
2011 (English)In: Polyhedron, ISSN 0277-5387, Vol. 30, no 2, 419-426 p.Article in journal (Refereed) Published
Abstract [en]

Poly(vinyl phosphonic acid) (PVPA)-Fe3O4 nanocomposite is synthesized by the precipitation of Fe3O4 in the presence of PVPA. Structural, surface, morphological, thermal properties and conductivity characterization/evaluation of the nanocomposite were performed by XRD, FT-IR, TEM, TGA and conductivity measurements respectively. The capping of PVPA around the Fe3O4 nanoparticles was confirmed by FT-IR spectroscopy, the interaction being via bridging oxygens of the phosphate and the nanoparticle surface. The crystallite and particle size were obtained as 6 +/- 2 and 8.7 +/- 0.1 nm from XRD line profile fitting and TEM image analysis respectively, which reveal nearly single crystalline nature of the Fe3O4 nanoparticles. Magnetic characterization of the bulk magnetite and (PVPA)-Fe3O4 nanocomposite reveals that both are in the superparamagnetic state at room temperature. The average magnetic domain size of the nanoparticles has been calculated using the Langevin function, which was fitted to the measured M-H hysteresis curves as 7.6 nm for the nanocomposite. In the nanocomposite, the reduction is due to the adsorption of PVPA onto the magnetite surface, which cancels some of the free spins at the surface causing a magnetically dead layer. Analysis of the conductivity and permittivity measurements revealed the coupling of ionic and polymer segmental motions and strong temperature dependency in the nanocomposite.

Place, publisher, year, edition, pages
2011. Vol. 30, no 2, 419-426 p.
Keyword [en]
Nanocomposite, Magnetite, Electrical properties, Conducting polymer, Magnetization
National Category
Chemical Sciences
URN: urn:nbn:se:kth:diva-31306DOI: 10.1016/j.poly.2010.11.011ISI: 000287343100029ScopusID: 2-s2.0-78651408231OAI: diva2:404878
Knut and Alice Wallenberg Foundation, UAW2004. 0224
QC 20110318Available from: 2011-03-18 Created: 2011-03-14 Last updated: 2011-03-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Toprak, Muhammet S.
By organisation
Functional Materials, FNM
In the same journal
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 70 hits
ReferencesLink to record
Permanent link

Direct link