Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impulse UWB Energy Detection Receiver with Energy Offset Synchronization Scheme
KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
2009 (English)In: 2009 IEEE INTERNATIONAL CONFERENCE ON ULTRA-WIDEBAND (ICUWB 2009), NEW YORK: IEEE , 2009, 540-544 p.Conference paper, Published paper (Refereed)
Abstract [en]

Impulse ultra-wideband radios (IR-UWB) show strong advantages in low power and low cost applications such as RFIDs and wireless sensor networks. This paper presents an IR-UWB receiver based on Energy Detection (ED) with on-off keying (OOK) modulation. A novel synchronization and detection algorithm using the energy offset scheme with adaptive threshold detection is suggested, aiming to reduce energy consumption and simplify hardware complexity. Simulation and FPGA implementation reveal that the proposed method can avoid complex and power consuming synchronization blocks, and reduce the preamble length, whereas maintaining the performance in the target level. Hardware integration issues are discussed, implying that the proposed receiver architecture has the possibility to achieve low complexity and low power implementation with several nJs energy per bit, at a data rate of 10Mb/s.

Place, publisher, year, edition, pages
NEW YORK: IEEE , 2009. 540-544 p.
Keyword [en]
Adaptive thresholds, Data rates, Detection algorithm, Energy consumption, Energy detection, Energy offset, Energy-per-bit, Hardware complexity, Hardware integrations, Low complexity, Low cost applications, Low Power, Low power implementation, On-off keying modulations, Power consuming, Receiver architecture, Synchronization scheme, Target levels, Ultra-wideband radio, UWB receivers, Radio receivers, Signal detection, Synchronization, Wireless sensor networks, Wireless telecommunication systems
National Category
Computer and Information Science
Identifiers
URN: urn:nbn:se:kth:diva-32035DOI: 10.1109/ICUWB.2009.5288726ISI: 000287267300106Scopus ID: 2-s2.0-71949087028ISBN: 978-1-4244-2930-1 (print)OAI: oai:DiVA.org:kth-32035DiVA: diva2:408591
Conference
9th IEEE International Conference on Ultra-Wideband, Vancouver, CANADA, SEP 09-11, 2009
Note
QC 20110504Available from: 2011-04-05 Created: 2011-04-04 Last updated: 2012-02-13Bibliographically approved
In thesis
1. Impulse Radio UWB for the Internet-of-Things: A Study on UHF/UWB Hybrid Solution
Open this publication in new window or tab >>Impulse Radio UWB for the Internet-of-Things: A Study on UHF/UWB Hybrid Solution
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This dissertation investigates Ultra-Wideband (UWB) techniques for the next generation Radio Frequency Identification (RFID) towards the Internet-of-Things (IoT). In particular, an ultra-high frequency (UHF) wireless-powered UWB radio (UHF/UWB hybrid) with asymmetric links is explored from system architecture to circuit implementation.

Context-aware, location-aware, and energy-aware computing for the IoT demands future micro-devices (e.g., RFID tags) with capabilities of sensing, processing, communication, and positioning, which can be integrated into everyday objects including paper documents, as well as food and pharmaceutical packages. To this end, reliable-operating and maintenance-free wireless networks with low-power and low-cost radio transceivers are essential. In this context, state-of-the-art passive RFID technologies provide limited data rate and positioning accuracy, whereas active radios suffer from high complexity and power-hungry transceivers. Impulse Radio UWB (IR-UWB) exhibits significant advantages that are expected to overcome these limitations. Wideband signals offer robust communications and high-precision positioning; duty-cycled operations allow link scalability; and baseband-like architecture facilitates extremely simple and low-power transmitters. However, the implementation of the IR-UWB receiver is still power-hungry and complex, and thus is unacceptable for self-powered or passive tags.

To cope with μW level power budget in wireless-powered systems, this dissertation proposes an UHF/UWB hybrid radio architecture with asymmetric links. It combines the passive UHF RFID and the IR-UWB transmitter. In the downlink (reader-tag), the tag is powered and controlled by UHF signals as conventional passive UHF tags, whereas it uses an IR-UWB transmitter to send data for a short time at a high rate in the uplink (tag-reader). Such an innovative architecture takes advantage of UWB transmissions, while the tag avoids the complex UWB receiver by shifting the burden to the reader. A wireless-powered tag providing -18.5 dBm sensitivity UHF downlink and 10 Mb/s UWB uplink is implemented in 180 nm CMOS. At the reader side, a non-coherent energy detection IR-UWB receiver is designed to pair the tag. The receiver is featured by high energy-efficiency and flexibility that supports multi-mode operations. A novel synchronization scheme based on the energy offset is suggested. It allows fast synchronization between the reader and tags, without increasing the hardware complexity. Time-of-Arrival (TOA) estimation schemes are analyzed and developed for the reader, which enables tag localization. The receiver prototype is fabricated in 90 nm CMOS with 16.3 mW power consumption and -79 dBm sensitivity at 10 Mb/s data rate. The system concept is verified by the link measurement between the tag and the reader. Compared with current passive UHF RFID systems, the UHF/UWB hybrid solution provides an order of magnitude improvement in terms of the data rate and positioning accuracy brought by the IR-UWB uplink.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. xx, 94 p.
Series
Trita-ICT-ECS AVH, ISSN 1653-6363 ; 11:15
Keyword
Ultra-Wideband, impulse radio, IR-UWB, RFID, asymmetric links, UHF/UWB hybrid, wireless sensing, energy detection, low power, radio receiver, positioning, Internet-of-Things
National Category
Computer Systems Communication Systems
Identifiers
urn:nbn:se:kth:diva-59107 (URN)978-91-7501-206-3 (ISBN)
Public defence
2012-02-08, Sal/Hall D, KTH-Forum, Isafjordsgatan 39, Kista, 13:30 (English)
Opponent
Supervisors
Note
QC 20120110Available from: 2012-01-10 Created: 2012-01-10 Last updated: 2012-01-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Zou, ZhuoRuan, YueZheng, Li-RongTenhunen, Hannu
By organisation
VinnExcellence Center for Intelligence in Paper and Packaging, iPACKElectronic, Computer and Software Systems, ECS
Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 157 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf