Change search
ReferencesLink to record
Permanent link

Direct link
Numerical study of vertical dispersion by stratified turbulence
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics.ORCID iD: 0000-0002-9819-2906
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics.
2009 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 631, 149-163 p.Article in journal (Refereed) Published
Abstract [en]

Numerical simulations are carried Out to investigate vertical fluid particle dispersion in uniformly stratified stationary turbulent flows. The results are compared with the analysis of Lindborg & Brethouwer (J. Fluid Mech., vol. 614, 2008, pp. 303-314), who derived long- and short-time relations for the mean square vertical displacement of fluid particles. Several direct numerical simulations (DNSs) with different degrees of stratification and different buoyancy Reynolds numbers are carried out to test the long-time relation = 2 epsilon(P)t/N-2. Here, epsilon(P) is the mean dissipation of turbulent potential energy; N is the Brunt-Vaisala frequency; and t is time. The DNSs show good agreement with this relation, with a weak dependence on the buoyancy Reynolds number. Simulations with hyperviscosity are carried out to test the relation = (1 + pi C-PL)2 epsilon(P)t/N-2, which should be valid for shorter time scales in the range N-1 << t << T, where T is the turbulent eddy turnover time. The results of the hyperviscosity simulations come closer to this prediction with C-PL about 3 with increasing stratification. However, even in the simulation with the strongest stratification the growth of is somewhat slower than linear in this regime. Based on the simulation results it is argued that the time scale determining the evolution Of is the eddy turnover time, T, rather than the buoyancy time scale N-1, as suggested in previous studies. The simulation results are also consistent with the prediction of Lindborg & Brethouwer (2008) that the nearly flat plateau Of observed at t similar to T should scale as 4E(P)/N-2, where E-P is the mean turbulent potential energy.

Place, publisher, year, edition, pages
2009. Vol. 631, 149-163 p.
National Category
Mechanical Engineering
URN: urn:nbn:se:kth:diva-32162DOI: 10.1017/S0022112009006788ISI: 000268936400006ScopusID: 2-s2.0-69649095320OAI: diva2:409366
Swedish Research Council
QC 20110408Available from: 2011-04-08 Created: 2011-04-07 Last updated: 2011-04-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Brethouwer, GeertLindborg, Erik
By organisation
Linné Flow Center, FLOWMechanics
In the same journal
Journal of Fluid Mechanics
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 25 hits
ReferencesLink to record
Permanent link

Direct link