References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On the numerical approximation of drug diffusion in complex cell geometryPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2009 (English)In: Proceedings of the 6th International Conference on Frontiers of Information Technology, FIT '09, Abbottabad, 2009Conference paper (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Abbottabad, 2009.
##### Keyword [en]

Approximation of complex geometry, Homogenization, Metabolism in biological cells, Reaction-Diffusion system, 3-dimensional, Cell architectures, Cell geometries, Cellular architecture, Compartmental modeling, Complex geometries, Complex reactions, Dimensional spaces, Drug diffusion, Homogenization techniques, Mammalian cells, Mathematical modeling, Nonhomogeneity, Numerical approximations, Reaction diffusion systems, Simulation result, Spatial distribution, Toxic compounds, Whole systems, Diffusion in liquids, Dynamic models, Homogenization method, Information technology, Mammals, Metabolism, Computational geometry
##### National Category

Computational Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-32389DOI: 10.1145/1838002.1838021ScopusID: 2-s2.0-77956295910ISBN: 9781605586427 (ISBN)OAI: oai:DiVA.org:kth-32389DiVA: diva2:410360
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
##### Note

QC 20110413Available from: 2011-04-13 Created: 2011-04-13 Last updated: 2012-04-19Bibliographically approved
##### In thesis

The mathematical modeling of a mammalian cell is a very tedious work due to its very complex geometry. Especially, taking into account the spatial distribution and the inclusion of lipophilic toxic compounds greatly increases its complexity. The nonhomogeneity and the different cellular architecture of the cell certainly affect the diffusion of these compounds. The complexity of the whole system can be reduced by a homogenization technique. To see the effect of these compounds on different cell architectures, we have implemented a mathematical model. The work has been done in 2-dimensional space. The simulation results have been qualitatively verified using compartmental modeling approach. This work can be extended with a more complex reaction-diffusion system and to 3-dimensional space as well. Copyright 2009 ACM.

1. Numerical Approximation of Reaction and Diffusion Systems in Complex Cell Geometry$(function(){PrimeFaces.cw("OverlayPanel","overlay301451",{id:"formSmash:j_idt647:0:j_idt651",widgetVar:"overlay301451",target:"formSmash:j_idt647:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Computational Modeling of Reaction and Diffusion Processes in Mammalian Cell$(function(){PrimeFaces.cw("OverlayPanel","overlay516283",{id:"formSmash:j_idt647:1:j_idt651",widgetVar:"overlay516283",target:"formSmash:j_idt647:1:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});