Change search
ReferencesLink to record
Permanent link

Direct link
Overview of physics results from MAST
Show others and affiliations
2009 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 49, no 10, 104017- p.Article in journal (Refereed) Published
Abstract [en]

Several improvements to the MAST plant and diagnostics have facilitated new studies advancing the physics basis for ITER and DEMO, as well as for future spherical tokamaks (STs). Using the increased heating capabilities P-NBI <= 3.8 MW H-mode at I-P = 1.2 MA was accessed showing that the energy confinement on MAST scales more weakly with I-P and more strongly with B-t than in the ITER IPB98(y, 2) scaling. Measurements of the fuel retention of shallow pellets extrapolate to an ITER particle throughput of 70% of its original designed total throughput capacity. The anomalous momentum diffusion, chi(phi), is linked to the ion diffusion, chi(i), with a Prandtl number close to P-phi approximate to chi(phi)/chi(i) approximate to 1, although chi(i) approaches neoclassical values. New high spatial resolution measurements of the edge radial electric field, E-r, show that the position of steepest gradients in electron pressure and E-r (i.e. shearing rate) are coincident, but their magnitudes are not linked. The T-e pedestal width on MAST scales with root beta(ped)(pol) rather than rho(pol). The edge localized mode (ELM) frequency for type-IV ELMs, new in MAST, was almost doubled using n = 2 resonant magnetic perturbations from a set of four external coils (n = 1, 2). A new internal 12 coil set (n <= 3) has been commissioned. The filaments in the inter-ELM and L-mode phase are different from ELM filaments, and the characteristics in L-mode agree well with turbulence calculations. A variety of fast particle driven instabilities were studied from 10 kHz saturated fishbone like activity up to 3.8 MHz compressional Alfven eigenmodes. Fast particle instabilities also affect the off-axis NBI current drive, leading to fast ion diffusion of the order of 0.5 m(2) s(-1) and a reduction in the driven current fraction from 40% to 30%. EBW current drive start-up is demonstrated for the first time in a ST generating plasma currents up to 55 kA. Many of these studies contributed to the physics basis of a planned upgrade to MAST.

Place, publisher, year, edition, pages
2009. Vol. 49, no 10, 104017- p.
Keyword [en]
National Category
Physical Sciences
URN: urn:nbn:se:kth:diva-32373DOI: 10.1088/0029-5515/49/10/104017ISI: 000270388300018OAI: diva2:410557
QC 20110414Available from: 2011-04-14 Created: 2011-04-13 Last updated: 2011-04-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Rachlew, Elisabeth
In the same journal
Nuclear Fusion
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 49 hits
ReferencesLink to record
Permanent link

Direct link