Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Efficient computation of mean drag for the subcritical flow past a circular cylinder using general Galerkin G2
KTH, School of Computer Science and Communication (CSC), Numerical Analysis, NA.ORCID iD: 0000-0003-4256-0463
2009 (English)In: International Journal for Numerical Methods in Fluids, ISSN 0271-2091, E-ISSN 1097-0363, Vol. 59, no 11, 1241-1258 p.Article in journal (Refereed) Published
Abstract [en]

General Galerkin (G2) is a new computational method for turbulent flow. where a stabilized Galerkin finite element method is used to compute approximate weak solutions to the Navier-Stokes equations directly, without any filtering of the equations as in a standard approach to turbulence simulation. such as large eddy simulation, and thus no Reynolds stresses are introduced, which need modelling. In this paper, G2 is used to compute the drag coefficient c(D) for the flow Past a circular cylinder at Reynolds number Re=3900, for which the flow is turbulent. It is found that it is possible to approximate c(D) to an accuracy of a few percent, corresponding to the accuracy in experimental results for this problem, using less than 10(5) mesh points, which makes the simulations possible using a standard PC. The mesh adaptively refined until a stopping criterion is reached with respect to the error in a chosen output of interest, which in this paper is c(D). Both the stopping criterion and the mesh-refinement strategy are based on a posteriori error estimates, in the form of a space-time integral of residuals times derivatives of the solution of it dual problem, linearized at the approximate solution, and with data coupling to the output of interest.

Place, publisher, year, edition, pages
2009. Vol. 59, no 11, 1241-1258 p.
Keyword [en]
adaptive DNS/LES, general Galerkin (G2), adaptive finite element method, duality, a posteriori error estimate, turbulence, large eddy simulation (LES), direct numerical simulation (DNS), circular cylinder
National Category
Computer and Information Science
Identifiers
URN: urn:nbn:se:kth:diva-32453DOI: 10.1002/fld.1865ISI: 000264713300004Scopus ID: 2-s2.0-66149127779OAI: oai:DiVA.org:kth-32453DiVA: diva2:410710
Note
QC 20110414Available from: 2011-04-14 Created: 2011-04-14 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Hoffman, Johan

Search in DiVA

By author/editor
Hoffman, Johan
By organisation
Numerical Analysis, NA
In the same journal
International Journal for Numerical Methods in Fluids
Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 48 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf