Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Autothermal reforming of low-sulfur diesel over bimetallic RhPt supported on Al2O3, CeO2-ZrO2, SiO2 and TiO2
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
Stockholm University.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
Volvo Technology.
Show others and affiliations
2011 (English)In: Applied Catalysis B: Environmental, ISSN 0926-3373, E-ISSN 1873-3883, Vol. 106, no 3-4, 476-487 p.Article in journal (Refereed) Published
Abstract [en]

The objective of this paper is to study and clarify the role of selected supports (both reducible and non-reducible) on the activity, selectivity and stability of RhPt-based catalyst for diesel reforming. Autothermal reforming (AIR) of low-sulfur diesel (S similar to 6 ppm, C/H similar to 6.43 (w/w)), H(2)O/C similar to 2.5, O(2)/C similar to 0.49, was tested at bench scale to detect differences in activity for catalysts consisting of 1 wt% Rh and 1 wt% Pt supported on alumina, ceria-zirconia (17.5 wt% ceria), silica and titania. Promoters in the form of MgO. Y(2)O(3), La(2)O(3), CeO(2) and ZrO(2), ranging from 4 wt% to 10 wt%, were also added onto the supports to detect differences in catalyst activity in terms of diesel conversion, CO(2) selectivity, and hydrogen and ethylene production. All metals were added sequentially onto the support by the incipient wetness technique and washcoated on 400 cpsi cordierite monolithic carriers with dimensions d = 17.8 mm, l=30.5 mm.

The product gas analysis, using FTIR and NDIR, showed that RhPt/CeO(2)-ZrO(2) was found to be most active for AIR of diesel since a fuel conversion close to 98% was obtained. Furthermore, the catalyst activity of the unpromoted samples, in terms of diesel conversion, increased in the following order: RhPt/SiO(2) < RhPt/TiO(2) < RhPt/Al(2)O(3) < RhPt/CeO(2)-ZrO(2). The addition of promoters was found to be insignificant as well as having a negative impact on the catalyst performance in most cases, except for the alumina-promoted sample. The addition of 10 wt% La(2)O(3) on RhPt/Al(2)O(3) was found to enhance diesel conversion, hydrogen productivity as well as lower the ethylene concentration from 3700 ppm to less than half that value. The latter observation was confirmed by O(2)-TPO analysis of aged powder samples where lower loads of coke were present than on the La-promoted sample.

The morphology, surface and bulk properties of RhPt/CeO(2)-ZrO(2) were closely examined in order to provide a possible correlation between the activity and characterization results. N(2)-BET analysis showed that the surface area of RhPt/CeO(2)-ZrO(2) was 64 m(2)/g, while the silica samples exhibited the highest area, similar to 137-185 m(2)/g. Hence, the difference in the surface areas was not enough to explain the trends observed in the activity measurements. XRD analysis of RhPt/CeO(2)-ZrO(2) showed crystalline phases characteristic of zirconia, most likely tetragonal. Also, the diffractogram did not reveal any Rh or Pt peaks indicating that the noble metal particles are highly dispersed on the support. In contrast, peaks ascribed to metallic Pt (similar to 30-46 nm) were clearly visible on the XRD patterns taken from all the other supported samples. H(2)-TPR analysis of RhPt/CeO(2)-ZrO(2) showed reduction peaks ascribed to Rh(i)O(x) species as well as a minor hydrogen spillover effect on the support to be present at T=120 degrees C and 450 degrees C, respectively. Also, the hydrogen consumption of the Rh(i)O(x) species was the highest compared to the other supported RhPt samples. TEM analysis performed on fresh RhPt/CeO(2)-ZrO(2) showed that the Rh(i)O(x) and Pt particles were highly dispersed on the support, both with particle sizes in the vicinity of similar to 5-15 nm. Rh species was found on ceria and zirconia, while Pt was present mainly on the ceria layer possibly in the form of Pt-O-Ce bonds. H(2)-chemisorption analysis measured at T similar to 40 degrees C shows similar Rh dispersion results.

To summarize, the higher activity results of RhPt/CeO(2)-ZrO(2) for AIR of diesel, compared to other supported catalysts, may be ascribed to the higher reducibility of Rh(i)O(x) species as well as the superior Rh and Pt dispersion. Also, the support contribution, in particular ceria, is believed to promote water gas-shift activities as well as reduce coke deposits on the catalyst surface.

Place, publisher, year, edition, pages
2011. Vol. 106, no 3-4, 476-487 p.
Keyword [en]
Alumina, Ceria-zirconia, Diesel reforming, Rhodium-platinum, Silica, Titania
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-32521DOI: 10.1016/j.apcatb.2011.06.006ISI: 000294092400024Scopus ID: 2-s2.0-79960835892OAI: oai:DiVA.org:kth-32521DiVA: diva2:410925
Note
QC 20110415. Updated from submitted to published.Available from: 2011-04-15 Created: 2011-04-15 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Rhodium diesel-reforming catalysts for fuel cell applications
Open this publication in new window or tab >>Rhodium diesel-reforming catalysts for fuel cell applications
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Heavy-duty diesel truck engines are routinely idled at standstill to provide cab heating or air conditioning, and in addition to supply electricity to comfort units such as radio and TV. Idling is an inefficient and unfavorable process resulting in increased fuel consumption, increased emissions, shortened engine life, impaired driver rest and health, and elevated noise. Hydrogen-fueled, polymer-electrolyte fuel-cell auxiliary power unit (PEFC-APU) as a silent external power supply, working independently of the main engine, is proposed as viable solution for better fuel economy and abatement of idling emissions. In a diesel PEFC-APU, the hydrogen storage problem is circumvented as hydrogen can be generated onboard from diesel by using a catalytic reformer. In order to make catalytic diesel PEFC-APU systems viable for commercialization research is still needed. Two key areas are the development of reforming catalyst and reformer design, which both are the scope of this thesis. For diesel-reforming catalysts, low loadings of Rh and RhPt alloys have proven to exhibit excellent reforming and hydrogen selectivity properties. For the development of a stable reforming catalyst, more studies have to be conducted in order to find suitable promoters and support materials to optimize and sustain the long-term performance of the Rh catalyst. The next step will be full-scale tests carried out at realistic operating conditions in order to fully comprehend the overall reforming process and to validate promising Rh catalysts. This thesis can be divided into two parts; the first part addresses the development of catalysts in the form of washcoated cordierite monoliths for autothermal reforming (ATR) of diesel. A variety of catalyst compositions were developed containing Rh or RhPt as active metals, CeO2, La2O3, MgO, Y2O3 as promoters and Al2O3, CeO2-ZrO2, SiO2 and TiO2 as support materials. The catalysts were tested in a bench-scale reactor and characterized by using N2-BET, XRD, H2 chemisorption, H2-TPR, O2-TPO, XPS and TEM analyses. The second part addresses the development and testing of full-scale reformers at various realistic operating conditions using promising Rh catalysts.

The thesis shows that a variety of Rh on alumina catalysts was successfully tested for ATR of diesel (Papers I-IV). Also, zone-coating, meaning adding two washcoats on specific parts of the monolith, was found to have beneficial effects on the ATR catalyst performance (Paper II). In addition, RhPt supported on CeO2-ZrO2 was found to be one of the most active and promising catalyst candidates for ATR of diesel. The superior performance may be attributed to higher reducibility of RhiOx species and greater dispersion of Rh and Pt on the support (Paper IV). Finally, two full-scale diesel reformers were successfully developed and proven capable of providing high fuel conversion and hydrogen production from commercial diesel over selected Rh catalysts (Papers II-III, V-VI).

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. x, 81 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2011:28
Keyword
Autothermal reforming, auxiliary power unit, BET, chemisorption, diesel, fuel cell, hydrogen, monolith, reforming catalyst, reformer design, Rh, RhPt alloy, TEM, TPO, TPR, XRD, XPS, zone coating
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-32647 (URN)978-91-7415-945-5 (ISBN)
Public defence
2011-04-29, KTH - Sal F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20110418Available from: 2011-04-18 Created: 2011-04-18 Last updated: 2011-04-18Bibliographically approved
2. RhPt and Ni based catalysts for fuel reforming in energy conversion
Open this publication in new window or tab >>RhPt and Ni based catalysts for fuel reforming in energy conversion
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Although current trends in global warming are of great concern, energy demand is still increasing, resulting in increasing pollutant emissions. To address this issue, we need reliable renewable energy sources, lowered pollutant emissions, and efficient and profitable processes for energy conversion. We also need to improve the use of the energy, produced by existing infrastructure. Consequently, the work presented in this thesis aims at investigating current scientific and technological challenges in energy conversion through biomass gasification and the alternative use of fossil fuels, such as diesel, in the generation of cleaner electricity through auxiliary power units in the transport

sector. Production of chemicals, syngas, and renewable fuels is highly dependent on the development and innovation of catalytic processes within these applications. This thesis focuses on the development and optimization of catalytic technologies in these areas. One of the limitations in the commercialization of the biomass gasification technology is the effective catalytic conversion of tars, formed during gasification. Biomass contains high amounts of alkali impurities, which pass on to the producer gas. Therefore, a new material with alkali tolerance is needed.

In the scope of this thesis, a new catalyst support, KxWO3 – ZrO2 with high alkali resistance was developed. The dynamic capability of KxWO3 – ZrO2 to store alkali metals in the crystal structure, enhances the capture of alkali metals "in situ". Alkali metals are also important electronic promoters for the active phase, which usually increases the catalysts activity and selectivity for certain products. Experimental results show that conversion of 1-methylnaphathalene over Ni/KxWO3 – ZrO2 increases in the presence of 2 ppm of gas-phase K (Paper I). This support is considered to contribute to the electronic equilibrium within the metal/support interface, when certain amounts of alkali metals are present. The potential use of this support can be extended to applications in which alkali "storage-release" properties are required, i.e. processes with high alkali content in the process flow, to enhance catalyst lifetime and regeneration.

In addition, fundamental studies to understand the adsorption geometry of naphthalene with increasing temperature were performed in a single crystal of Ni(111) by STM analyses. Chapter 9 presents preliminary studies on the adsorption geometry of the molecule, as well as DFT calculations of the adsorption energy. In relation to the use of clean energy for transport applications, hydrogen generation through ATR for FC-APUs is presented in Papers II to V. Two promoted RhPt bimetallic catalysts were selected in a previous bench scale study, supported on La2O3:CeO2/d – Al2O3 and MgO : Y2O3/CeO2 – ZrO2. Catalyst evaluation was performed in a fullscale reformer under real operating conditions. Results showed increased catalyst activity after the second monolithic catalyst due to the effect of steam reforming, WGS reaction, and higher catalyst reducibility of the RhxOy species in the CeO2 – ZrO2 mixed oxide, as a result of the improved redox properties. The influence of sulfur and coke formation on diesel reforming was assessed after 40 h on stream. Sulfur poisoning was evaluated for the intrinsic activity related to the total Rh and Pt area observed after exposure to sulfur. Sulfur concentration in the aged catalyst washcoat was observed to decrease in the axial direction of the reformer. Estimations of the amount of sulfur adsorbed were found to be below the theoretical equilibrated coverage on Rh and Pt, thus showing a partial deactivation due to sulfur poisoning.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. xii, 100 p.
Series
TRITA-CHE-Report, ISSN 1654-1081 ; 2015:10
Keyword
RhPt bimetallic catalysts, Ni catalysts, ceria-zirconia, potassium tungsten bronze, zirconium dioxide, autothermal reforming, biodiesel, diesel, sulfur, deactivation, tar reforming, steam reforming, biomass gasification, auxiliary power units, naphthalene
National Category
Chemical Engineering
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-160026 (URN)978-91-7595-440-0 (ISBN)
Public defence
2015-03-05, F3, Lindstedtsvägen 26, KTH, Stokcholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20150213

Available from: 2015-02-13 Created: 2015-02-12 Last updated: 2015-11-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Karatzas, XanthiasGonzález, AngélicaPettersson, Lars
By organisation
Chemical Technology
In the same journal
Applied Catalysis B: Environmental
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 167 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf