Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparative Study of Losses in Ultrasharp Silicon-on-Insulator Nanowire Bends
KTH, School of Information and Communication Technology (ICT), Centres, Zhejiang-KTH Joint Research Center of Photonics, JORCEP.
KTH, School of Information and Communication Technology (ICT), Centres, Zhejiang-KTH Joint Research Center of Photonics, JORCEP.
KTH, School of Information and Communication Technology (ICT), Centres, Zhejiang-KTH Joint Research Center of Photonics, JORCEP. KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.ORCID iD: 0000-0002-3401-1125
2009 (English)In: IEEE Journal of Selected Topics in Quantum Electronics, ISSN 1077-260X, E-ISSN 1558-4542, Vol. 15, no 5, 1406-1412 p.Article in journal (Refereed) Published
Abstract [en]

Ultrasharp silicon-on-insulator (SOI) nanowire bends (with a bending radius of R < 2 mu m) are analyzed numerically. It is shown that the calculated bending losses for ultrasharp bends are overestimated when using a modal analysis method based on finite-difference method. In this case, reliable estimation of the bending loss can be made with a 3-D finite-difference time-domain (3-D-FDTD) method. By using 3-D-FDTD simulation, the losses in SOI nanowire bends with different structures and parameters are studied. By increasing the core width or height of the waveguide, one can reduce the bending loss at longer wavelengths for TE mode while the bending performance at shorter wavelengths degrades due to the multimode effect. Increasing the core height is much more effective to reduce the bending loss of TM mode than increasing core width. The relationship between the intrinsic Q-factor of a microring resonator and the bending radius is also obtained.

Place, publisher, year, edition, pages
2009. Vol. 15, no 5, 1406-1412 p.
Keyword [en]
Bending loss, finite-difference time domain (FDTD), nanowire, silicon-on-insulator (SOI), ultrasharp, waveguide
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-32683DOI: 10.1109/JSTQE.2009.2013360ISI: 000270950300017Scopus ID: 2-s2.0-70350191663OAI: oai:DiVA.org:kth-32683DiVA: diva2:411452
Note

QC 20110418

Available from: 2011-04-18 Created: 2011-04-18 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

He, Sailing

Search in DiVA

By author/editor
Sheng, ZhenDai, DaoxinHe, Sailing
By organisation
Zhejiang-KTH Joint Research Center of Photonics, JORCEPElectromagnetic Engineering
In the same journal
IEEE Journal of Selected Topics in Quantum Electronics
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf