Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Disjoint minimal graphs
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2009 (English)In: Annals of Global Analysis and Geometry, ISSN 0232-704X, E-ISSN 1572-9060, Vol. 35, no 2, 139-155 p.Article in journal (Refereed) Published
Abstract [en]

We prove that the number s(n) of disjoint minimal graphs supported on domains in R-n is bounded by e(n + 1)(2). In the two-dimensional case, we show that s(2) <= 3.

Place, publisher, year, edition, pages
2009. Vol. 35, no 2, 139-155 p.
Keyword [en]
Minimal graphs, Angular density, Fundamental frequency
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-32796DOI: 10.1007/s10455-008-9127-7ISI: 000263777200003Scopus ID: 2-s2.0-61449177951OAI: oai:DiVA.org:kth-32796DiVA: diva2:411931
Funder
Swedish Research Council, VR 2007-6224Knut and Alice Wallenberg Foundation, 2005.0098
Note
QC 20110420Available from: 2011-04-20 Created: 2011-04-20 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Tkachev, Vladimir G.
By organisation
Mathematics (Div.)
In the same journal
Annals of Global Analysis and Geometry
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 42 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf